论文标题
硬球体流体在无序的多孔介质中的扩散:恩斯科理论描述
Diffusion of hard sphere fluids in disordered porous media: Enskog theory description
论文作者
论文摘要
我们使用恩斯科理论来描述无序的多孔介质硬球体的自扩散系数。使用美国先前开发的缩放粒子理论来描述硬球体流体的热力学特性,从而获得了流体流体和流体 - 矩阵对分布函数的简单分析表达式,并用作恩斯科理论的输入。接触值获得的表达仅通过几何孔隙度来描述,并且不包括对其他类型的孔隙率的依赖,这对于描述热力学特性很重要。结果表明,这种接触值的应用忽略了通过矩阵捕获流体颗粒的影响,至少应将探针粒子孔隙率$ ϕ $包括在恩斯科理论中,以正确描述矩阵影响。在本文中,我们通过更改流体矩阵的接触值和流体流体对分布的功能,扩展了Enskog理论,具有新的特性,不仅包括对几何孔隙率的依赖性,还包括对探针颗粒孔隙率$ ϕ $的依赖性。结果表明,恩斯科理论的这种半经验改进对应于SPT2B1近似,以描述热力学特性,并且预测了多孔介质对无序多孔介质硬球体扩散系数的影响的正确趋势。说明了与计算机模拟的良好一致性。讨论了流体密度,流体与基质球体大小比,基质孔隙率和基质形态对硬球体流体自扩散系数的影响。
We use the Enskog theory for the description of the self-diffusion coefficient of hard sphere fluids in disordered porous media. Using the scaled particle theory previously developed by us for the description of thermodynamic properties of hard sphere fluids, simple analytical expressions for the contact values of the fluid-fluid and fluid-matrix pair distribution functions are obtained and used as the input of Enskog theory. The expressions obtained for the contact values are described only by the geometric porosity and do not include the dependence on other types of porosity that are important for the description of thermodynamic properties. It is shown that the application of such contact values neglects the effects of trapping of fluid particles by a matrix and at least the probe particle porosity $ϕ$ should be included in the Enskog theory for a correct description of the matrix influence. In this paper we extend the Enskog theory by changing the contact values of the fluid-matrix and the fluid-fluid pair distribution functions with new properties which include the dependence not only on geometric porosity but also on probe particle porosity $ϕ$. It is shown that such semi-empirical improvement of the Enskog theory corresponds to SPT2b1 approximation for the description of thermodynamic properties and it predicts correct trends for the influence of porous media on the diffusion coefficient of a hard sphere fluid in disordered porous media. Good agreement with computer simulations is illustrated. The effects of fluid density, fluid to matrix sphere size ratio, matrix porosity and matrix morphology on the self-diffusion coefficient of hard sphere fluids are discussed.