论文标题
二阶非自治延迟系统的周期性解决方案的存在和时空模式
Existence and Spatio-Temporal Patterns of Periodic Solutions to Second Order Non-Autonomous Equivariant Delayed Systems
论文作者
论文摘要
在Hartman-Nagumo生长条件下研究了具有多个延迟的二阶可逆性非自治周期系统的周期性解决方案的存在和时空对称模式。该方法基于使用Brouwer $ D_1 \ times \ Mathbb Z_2 \ timesγ$ -Equivariant学位理论,其中$ d_1 $与反向对称性有关,$ \ MATHBB Z_2 $与右手的奇怪性有关,$γ$反映了对称网络的coupling coupling of coupling of coupling of coupple newerne coupple innets in coupple newerne coupling。抽象结果由$γ= d_n $的具体示例支持 - 订单$ 2N $的二面体组。
Existence and spatio-temporal symmetric patterns of periodic solutions to second order reversible equivariant non-autonomous periodic systems with multiple delays are studied under the Hartman-Nagumo growth conditions. The method is based on using the Brouwer $D_1 \times \mathbb Z_2\times Γ$-equivariant degree theory, where $D_1$ is related to the reversing symmetry, $\mathbb Z_2$ is related to the oddness of the right-hand-side and $Γ$ reflects the symmetric character of the coupling in the corresponding network. Abstract results are supported by a concrete example with $Γ= D_n$ -- the dihedral group of order $2n$.