论文标题

通过主动学习的贝叶斯推论的自适应正交方案

Adaptive quadrature schemes for Bayesian inference via active learning

论文作者

Llorente, F., Martino, L., Elvira, V., Delgado, D., López-Santiago, J.

论文摘要

数值整合和仿真是科学领域的基本主题。我们根据主动学习程序提出了新型的自适应正交方案。我们考虑了一种插值方法,用于构建替代物后密度,并将其与蒙特卡洛采样方法和其他正交规则相结合。正交的节点是通过最大化合适的采集函数依次选择的,该函数考虑了后端和节点的位置的当前近似。这种最大化不需要对真实后部的其他评估。我们基于高斯和最近的邻居(NN)基础引入了两个特定方案。对于高斯案例,我们还提供了一个新的程序来拟合带宽参数,以构建密度函数的合适模拟器。通过这两种技术,我们始终获得对边际可能性的积极估计(又称贝叶斯证据)。还描述了同等的重要性采样解释,该解释允许设计扩展方案。提供并讨论了几个理论结果。数值结果表明了所提出的方法的优势,包括在天文学动力学模型中一个具有挑战性的推理问题,目的是揭示绕星星绕的行星的数量。

Numerical integration and emulation are fundamental topics across scientific fields. We propose novel adaptive quadrature schemes based on an active learning procedure. We consider an interpolative approach for building a surrogate posterior density, combining it with Monte Carlo sampling methods and other quadrature rules. The nodes of the quadrature are sequentially chosen by maximizing a suitable acquisition function, which takes into account the current approximation of the posterior and the positions of the nodes. This maximization does not require additional evaluations of the true posterior. We introduce two specific schemes based on Gaussian and Nearest Neighbors (NN) bases. For the Gaussian case, we also provide a novel procedure for fitting the bandwidth parameter, in order to build a suitable emulator of a density function. With both techniques, we always obtain a positive estimation of the marginal likelihood (a.k.a., Bayesian evidence). An equivalent importance sampling interpretation is also described, which allows the design of extended schemes. Several theoretical results are provided and discussed. Numerical results show the advantage of the proposed approach, including a challenging inference problem in an astronomic dynamical model, with the goal of revealing the number of planets orbiting a star.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源