论文标题
在线性化的mullins-sekerka/stokes系统上,用于两相流
On a linearized Mullins-Sekerka/Stokes system for two-phase flows
论文作者
论文摘要
我们在具有各种边界条件的有限域中研究线性化的mullins-sekerka/stokes系统。该系统在证明stokes/cahn-hilliard System对其尖锐的界面限制(是Stokes/mullins-sekerka系统)的融合方面起着重要作用,并在及时在本地证明了后一种系统的可溶性。我们证明了在合适的$ l^2 $ -sobolev空间中线性化系统的可溶性,借助非自治抽象线性演化方程的最大规律性结果。
We study a linearized Mullins-Sekerka/Stokes system in a bounded domain with various boundary conditions. This system plays an important role to prove the convergence of a Stokes/Cahn-Hilliard systemto its sharp interface limit, which is a Stokes/Mullins-Sekerka system, and to prove solvability of the latter system locally in time. We prove solvability of the linearized system in suitable $L^2$-Sobolev spaces with the aid of a maximal regularity result for non-autonomous abstract linear evolution equations.