论文标题

正交多项式的渐近行为。奇异的关键案例

Asymptotic behavior of orthogonal polynomials. Singular critical case

论文作者

Yafaev, D. R.

论文摘要

我们的目标是找到正交多项式的$ n \ to \ infty $ $ p_ {n}(z)$由jacobi复发系数$ a_ {n} $(off-diagonal项)和$ b_ {n} $(diagonal项)。我们考虑$ a_ {n} \ to \ infty $,$ b_ {n} \ to \ infty $,以$ \ sum a_ {n}^{ - 1} <\ infty $ $($ a_ a _ {n}^{ - 1} (a_ {n} a_ {n-1})^{ - 1/2} \toγ$ as $ n \ to \ infty $。在情况下$ |γ| \ neq 1 $渐近公式为$ p_ {n}(z)$是已知的;它们取决于$ |的标志。 γ| -1 $。我们研究关键案例$ | γ| = 1 $。在$ |γ_{n} |的情况下,获得的公式在质量上有所不同。 \至1-0 $和$ |γ_{n} | \至1+0 $。本文的另一个目的是提倡一种基于jacobi差异方程式和schrödinger类型的微分方程的$ p_ {n}(z)$的渐近行为的方法。

Our goal is to find an asymptotic behavior as $n\to\infty$ of the orthogonal polynomials $P_{n}(z)$ defined by Jacobi recurrence coefficients $a_{n}$ (off-diagonal terms) and $ b_{n}$ (diagonal terms). We consider the case $a_{n}\to\infty$, $b_{n}\to\infty$ in such a way that $\sum a_{n}^{-1}<\infty$ $($that is, the Carleman condition is violated$)$ and $γ_{n}:=2^{-1}b_{n} (a_{n}a_{n-1})^{-1/2} \to γ$ as $n\to\infty$. In the case $|γ| \neq 1$ asymptotic formulas for $P_{n}(z)$ are known; they depend crucially on the sign of $| γ|-1$. We study the critical case $| γ|=1$. The formulas obtained are qualitatively different in the cases $|γ_{n}| \to 1-0$ and $|γ_{n}| \to 1+0$. Another goal of the paper is to advocate an approach to a study of asymptotic behavior of $P_{n}(z)$ based on a close analogy of the Jacobi difference equations and differential equations of Schrödinger type.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源