论文标题

椭圆形对称性的强大测试

A Robust Test for Elliptical Symmetry

论文作者

Soloveychik, Ilya

论文摘要

大多数信号处理和统计应用都在很大程度上依赖于特定的数据分布模型。高斯分布虽然是最常见的选择,但在大多数现实世界中,由于无法说明来自重型人群的数据或被异常值污染,因此在大多数现实世界中都不足。此类问题要求使用强大的统计数据。强大的模型和估计量通常基于椭圆种群,使后者无处不在,以所有可靠的统计方法。为了确定此类工具是否适用于任何特定情况,使用拟合优度(GOF)测试用于验证椭圆度假设。椭圆度GOF测试通常很难分析,并且它们的统计能力通常不是特别强。在这项工作中,假设真正的协方差矩阵是未知的,我们设计并严格分析了与单位球体上所有椭圆度的替代方案一致的强大GOF测试。提出的测试基于泰勒的估计器,并根据易于计算的数据统计数据进行配制。为了进行严格的分析,我们基于De Finetti引入的可交换随机变量计算的新框架。我们的发现得到了数值模拟的支持,将它们与其他流行的GOF测试进行了比较,并证明了建议的技术的统计能力明显更高。

Most signal processing and statistical applications heavily rely on specific data distribution models. The Gaussian distributions, although being the most common choice, are inadequate in most real world scenarios as they fail to account for data coming from heavy-tailed populations or contaminated by outliers. Such problems call for the use of Robust Statistics. The robust models and estimators are usually based on elliptical populations, making the latter ubiquitous in all methods of robust statistics. To determine whether such tools are applicable in any specific case, goodness-of-fit (GoF) tests are used to verify the ellipticity hypothesis. Ellipticity GoF tests are usually hard to analyze and often their statistical power is not particularly strong. In this work, assuming the true covariance matrix is unknown we design and rigorously analyze a robust GoF test consistent against all alternatives to ellipticity on the unit sphere. The proposed test is based on Tyler's estimator and is formulated in terms of easily computable statistics of the data. For its rigorous analysis, we develop a novel framework based on the exchangeable random variables calculus introduced by de Finetti. Our findings are supported by numerical simulations comparing them to other popular GoF tests and demonstrating the significantly higher statistical power of the suggested technique.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源