论文标题
银河中心I的耀斑:磁性捕获的黑洞积聚磁盘中的轨道通量管
Flares in the Galactic center I: orbiting flux tubes in Magnetically Arrested Black Hole Accretion Disks
论文作者
论文摘要
重力仪器对Sgra*的最新观察结果在$ \ sim 10 $重力半径($ r_g $)的距离上有星体统计的红外耀斑(IR)。在本文中,我们研究了基于3D一般相对论的磁性水力动力学(GRMHD)模拟的磁磁磁盘(MAD)模拟,这些模拟表现出剧烈的磁通发作,从黑洞磁层中逃脱。这些事件对于耀斑建模具有吸引力,原因是多种原因:i)磁性主导区域可以通过磁性旋转湍流和剪切来抗拒破坏,ii)磁场的方向主要是垂直垂直的,如引力数据所暗示的,iii)与磁性喷发相关的磁性重新连接可能会产生粒子限制的范围,从而产生粒子的热量/范围的范围。在此分析中,我们跟踪爆发的通量束,并提供大小,能量和等离子体参数的分布。在我们的模拟中,轨道倾向于在$ \ sim 5-40 r_g $的一系列半径上循环。磁通束中包含的磁能范围为$ \ sim10^{40} $ erg,足以为IR和X射线耀斑供电。我们发现,磁性支撑的流动中的运动基本上是亚菌,与三种重力耀斑的推断时期 - 拉迪乌斯关系的张力。
Recent observations of SgrA* by the GRAVITY instrument have astrometrically tracked infrared flares (IR) at distances of $\sim 10$ gravitational radii ($r_g$). In this paper, we study a model for the flares based on 3D general relativistic magnetohydrodynamic (GRMHD) simulations of magnetically arrested accretion disks (MADs) which exhibit violent episodes of flux escape from the black hole magnetosphere. These events are attractive for flare modeling for several reasons: i) the magnetically dominant regions can resist being disrupted via magneto-rotational turbulence and shear, ii) the orientation of the magnetic field is predominantly vertical as suggested by the GRAVITY data, iii) magnetic reconnection associated with the flux eruptions could yield a self-consistent means of particle heating/acceleration during the flare events. In this analysis we track erupted flux bundles and provide distributions of sizes, energies and plasma parameter. In our simulations, the orbits tend to circularize at a range of radii from $\sim 5-40 r_g$. The magnetic energy contained within the flux bundles ranges up to $\sim10^{40}$ erg, enough to power IR and X-ray flares. We find that the motion within the magnetically supported flow is substantially sub-Keplerian, in tension with the inferred period-radius relation of the three GRAVITY flares.