论文标题
使用一种新方法成功预测了天体相关的亚库仑能量的总$α$诱导的反应横截面
Successful prediction of total $α$-induced reaction cross sections at astrophysically relevant sub-Coulomb energies using a novel approach
论文作者
论文摘要
重核的恒星($γ$,$α$)的预测基于亚库仑能量($α$,$γ$)横截面的计算。这些速率对于对所谓$ p $ nuclei的核合成建模至关重要。统计模型中的标准计算表明,对所选$α$ nucleus电位的敏感性很大。本研究解释了这种戏剧性灵敏度的原因,该敏感性是由假想的$α$ nucleus电位在基础反应横截面的基础光学模型计算中产生的。作为光学模型的替代方案,建议使用简单的屏障传输模型。结果表明,这种简单的模型与精心挑选的$α$ nucleus电位结合使用,能够预测总$α$诱导的反应横截面,该反应横截面对于高于$ a \ gtrsim 150 $的广泛重型目标核,不确定性低于两个因子。来自简单模型的新预测不需要对实验反应横截面的参数进行任何调整,而在先前的统计模型计算中,所有预测尚不确定,因为必须将$α$ - 努塞鲁斯电位的参数调整为实验数据。新模型允许预测天体重要性重要的$^{176} $ W($α$,$γ$)$^{180} $ OS反应降低不确定性,从而导致低温下的反应速率明显降低。新方法也可以通过广泛的目标核从$ a \ 60 $至$ a \ gtrsim 200 $进行验证。
The prediction of stellar ($γ$,$α$) reaction rates for heavy nuclei is based on the calculation of ($α$,$γ$) cross sections at sub-Coulomb energies. These rates are essential for modeling the nucleosynthesis of so-called $p$-nuclei. The standard calculations in the statistical model show a dramatic sensitivity to the chosen $α$-nucleus potential. The present study explains the reason for this dramatic sensitivity which results from the tail of the imaginary $α$-nucleus potential in the underlying optical model calculation of the total reaction cross section. As an alternative to the optical model, a simple barrier transmission model is suggested. It is shown that this simple model in combination with a well-chosen $α$-nucleus potential is able to predict total $α$-induced reaction cross sections for a wide range of heavy target nuclei above $A \gtrsim 150$ with uncertainties below a factor of two. The new predictions from the simple model do not require any adjustment of parameters to experimental reaction cross sections whereas in previous statistical model calculations all predictions remained very uncertain because the parameters of the $α$-nucleus potential had to be adjusted to experimental data. The new model allows to predict the reaction rate of the astrophysically important $^{176}$W($α$,$γ$)$^{180}$Os reaction with reduced uncertainties, leading to a significantly lower reaction rate at low temperatures. The new approach could also be validated for a broad range of target nuclei from $A \approx 60$ up to $A \gtrsim 200$.