论文标题
MAV在未知的黑暗地下矿山中使用深度学习
MAV Navigation in Unknown Dark Underground Mines Using Deep Learning
论文作者
论文摘要
本文提出了一种深度学习(DL)方法,以实现在未知的黑暗地下矿山隧道中进行低成本微型航空车(MAV)的完全自主飞行。这种环境提出了多种挑战,包括缺乏照明,狭窄的通道,阵风和灰尘。提出的方法不需要准确的姿势估计,并将飞行平台视为浮动对象。卷积神经网络(CNN)监督的图像分类器方法通过处理单个板载摄像头的图像框架来纠正MAV朝向矿井中心的标题,而平台在恒定高度和所需速度引用中导航。此外,CNN模块的输出可以从操作员用作碰撞预测信息的手段。该方法的效率已在瑞典地下矿山的多个现场试验中成功地进行了实验评估,这证明了该方法在不同地区和照明水平上提出的方法的能力。
This article proposes a Deep Learning (DL) method to enable fully autonomous flights for low-cost Micro Aerial Vehicles (MAVs) in unknown dark underground mine tunnels. This kind of environments pose multiple challenges including lack of illumination, narrow passages, wind gusts and dust. The proposed method does not require accurate pose estimation and considers the flying platform as a floating object. The Convolutional Neural Network (CNN) supervised image classifier method corrects the heading of the MAV towards the center of the mine tunnel by processing the image frames from a single on-board camera, while the platform navigates at constant altitude and desired velocity references. Moreover, the output of the CNN module can be used from the operator as means of collision prediction information. The efficiency of the proposed method has been successfully experimentally evaluated in multiple field trials in an underground mine in Sweden, demonstrating the capability of the proposed method in different areas and illumination levels.