论文标题

在复杂网络上深入学习传播动态

Deep learning of contagion dynamics on complex networks

论文作者

Murphy, Charles, Laurence, Edward, Allard, Antoine

论文摘要

预测传染动力学的演变仍然是一个开放的问题,机械模型仅提供部分答案。为了保持数学或计算的处理,这些模型必须依靠简化假设,从而限制了其预测的定量准确性以及它们可以建模的动力学的复杂性。在这里,我们提出了一种基于深度学习的互补方法,其中从时间序列数据中学到了管理网络动态的有效局部机制。我们的图形神经网络体系结构对动力学做出了很少的假设,我们使用不同复杂性的不同传染动力学来证明其准确性。通过允许对任意网络结构进行模拟,我们的方法使探索训练数据以外的学到动态的属性成为可能。最后,我们使用西班牙Covid-19爆发的实际数据说明了方法的适用性。我们的结果表明,深度学习如何提供一种新的和互补的观点,以在网络上建立有效的传染动态模型。

Forecasting the evolution of contagion dynamics is still an open problem to which mechanistic models only offer a partial answer. To remain mathematically or computationally tractable, these models must rely on simplifying assumptions, thereby limiting the quantitative accuracy of their predictions and the complexity of the dynamics they can model. Here, we propose a complementary approach based on deep learning where the effective local mechanisms governing a dynamic on a network are learned from time series data. Our graph neural network architecture makes very few assumptions about the dynamics, and we demonstrate its accuracy using different contagion dynamics of increasing complexity. By allowing simulations on arbitrary network structures, our approach makes it possible to explore the properties of the learned dynamics beyond the training data. Finally, we illustrate the applicability of our approach using real data of the COVID-19 outbreak in Spain. Our results demonstrate how deep learning offers a new and complementary perspective to build effective models of contagion dynamics on networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源