论文标题

碰撞感测的互补视觉神经元系统模型

Complementary Visual Neuronal Systems Model for Collision Sensing

论文作者

Fu, Qinbing, Yue, Shigang

论文摘要

受昆虫的视觉大脑的启发,本文介绍了用于实时和强大碰撞感应的互补视觉神经元系统模型的原始建模。已经对两类宽场运动敏感神经元进行了深入研究,即蝗虫中的小叶巨型运动检测器(LGMD)和果蝇中的小叶板切向细胞(LPTC)。 LGMD对威胁碰撞的深度接近对象具有特定的选择性;尽管LPTC仅对在水平和垂直方向上翻译对象敏感。尽管每个人都在包括机器人场景在内的各种视觉场景中进行了建模和应用,但是在研究它们的互补功能和选择性时,几乎没有做任何事情。为了填补此空缺,我们引入了一种混合模型,该模型将两个LGMD(LGMD-1和LGMD-2)与水平(向右和向左)敏感的LPTC(LPTC-R和LPTC-L)水平(LPTC-R和LPTC-L)结合在一起。随着不同活化神经元之间的协调和竞争,额叶接近刺激的接近特征可以通过抑制翻译和退缩运动来在很大程度上得到锐化。所提出的方法已在地面微型机器人机器人中作为嵌入式系统实现。多机器人实验证明了额叶碰撞感应的拟议模型的有效性和鲁棒性,这表现优于先前的单型神经元计算方法,而不是转化干扰。

Inspired by insects' visual brains, this paper presents original modelling of a complementary visual neuronal systems model for real-time and robust collision sensing. Two categories of wide-field motion sensitive neurons, i.e., the lobula giant movement detectors (LGMDs) in locusts and the lobula plate tangential cells (LPTCs) in flies, have been studied, intensively. The LGMDs have specific selectivity to approaching objects in depth that threaten collision; whilst the LPTCs are only sensitive to translating objects in horizontal and vertical directions. Though each has been modelled and applied in various visual scenes including robot scenarios, little has been done on investigating their complementary functionality and selectivity when functioning together. To fill this vacancy, we introduce a hybrid model combining two LGMDs (LGMD-1 and LGMD-2) with horizontally (rightward and leftward) sensitive LPTCs (LPTC-R and LPTC-L) specialising in fast collision perception. With coordination and competition between different activated neurons, the proximity feature by frontal approaching stimuli can be largely sharpened up by suppressing translating and receding motions. The proposed method has been implemented in ground micro-mobile robots as embedded systems. The multi-robot experiments have demonstrated the effectiveness and robustness of the proposed model for frontal collision sensing, which outperforms previous single-type neuron computation methods against translating interference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源