论文标题
如果可以的话,请嵌入我:几何感知器
Embed Me If You Can: A Geometric Perceptron
论文作者
论文摘要
通过使用机器学习解决涉及点云的几何任务是一个具有挑战性的问题。标准的前馈神经网络结合线性或(如果包括偏置参数),则是仿射层和激活功能。它们的几何建模是有限的,这激发了先前引入多层透射感(MLHP)的工作。通过应用欧几里得空间的共形嵌入来获得其组成部分,即高晶神经元。根据Clifford代数,可以将其作为输入和权重的笛卡尔点产物实现。如果以与输入空间几何形状的维度相一致的方式应用嵌入,则模型单元的决策表面成为超球体的组合,并使决策过程对人类的几何解释。我们对MLHP模型的扩展,多层几何感知器(MLGP)及其各自的层单元,即几何神经元,与3D几何形状一致,并提供了学习系数的几何处理。特别是,几何神经元激活在3D中是等级的,这对于旋转和翻译均衡是必不可少的。在对3D俄罗斯四角形形状进行分类时,我们定量地表明,我们的模型在嵌入以外的隐藏层中不需要激活函数,以超越香草多层感知器。在数据中存在噪声的情况下,我们的模型也优于MLHP。
Solving geometric tasks involving point clouds by using machine learning is a challenging problem. Standard feed-forward neural networks combine linear or, if the bias parameter is included, affine layers and activation functions. Their geometric modeling is limited, which motivated the prior work introducing the multilayer hypersphere perceptron (MLHP). Its constituent part, i.e., the hypersphere neuron, is obtained by applying a conformal embedding of Euclidean space. By virtue of Clifford algebra, it can be implemented as the Cartesian dot product of inputs and weights. If the embedding is applied in a manner consistent with the dimensionality of the input space geometry, the decision surfaces of the model units become combinations of hyperspheres and make the decision-making process geometrically interpretable for humans. Our extension of the MLHP model, the multilayer geometric perceptron (MLGP), and its respective layer units, i.e., geometric neurons, are consistent with the 3D geometry and provide a geometric handle of the learned coefficients. In particular, the geometric neuron activations are isometric in 3D, which is necessary for rotation and translation equivariance. When classifying the 3D Tetris shapes, we quantitatively show that our model requires no activation function in the hidden layers other than the embedding to outperform the vanilla multilayer perceptron. In the presence of noise in the data, our model is also superior to the MLHP.