论文标题

通过特征功能的互惠对抗学习

Reciprocal Adversarial Learning via Characteristic Functions

论文作者

Li, Shengxi, Yu, Zeyang, Xiang, Min, Mandic, Danilo

论文摘要

生成对抗网(GAN)已成为涉及复杂分布的任务的首选工具。为了稳定训练并减少gan的模式崩溃,其主要变体之一将积分概率度量(IPM)作为损失函数。这为广泛的IPM-GAN提供了理论支持,以基本上比较\ textit {评论家}的嵌入式域中的矩。我们通过使用强大的工具(即特征函数(CF)比较它们的时刻来比较它们的时刻,从而概括了这一点,该工具唯一且普遍地包含有关分布的所有信息。对于严格,我们首先建立了CF中阶段和振幅的物理含义,并表明这提供了一种可行的方式来平衡发电的准确性和多样性。然后,我们制定有效的抽样策略来计算CFS。在此框架内,我们进一步证明了当存在互惠时嵌入式和数据域之间的等效性,在这种框架中,我们自然地在自动编码器结构中开发了gan,以比较嵌入式空间中的所有内容(语义上有意义的流形)。这种有效的结构仅使用两个模块以及简单的训练策略,以实现双向生成清晰的图像,这被称为倒数CF GAN(RCF-GAN)。实验结果表明,在发电和重建方面,提出的RCF-GAN的表现出色。

Generative adversarial nets (GANs) have become a preferred tool for tasks involving complicated distributions. To stabilise the training and reduce the mode collapse of GANs, one of their main variants employs the integral probability metric (IPM) as the loss function. This provides extensive IPM-GANs with theoretical support for basically comparing moments in an embedded domain of the \textit{critic}. We generalise this by comparing the distributions rather than their moments via a powerful tool, i.e., the characteristic function (CF), which uniquely and universally comprising all the information about a distribution. For rigour, we first establish the physical meaning of the phase and amplitude in CF, and show that this provides a feasible way of balancing the accuracy and diversity of generation. We then develop an efficient sampling strategy to calculate the CFs. Within this framework, we further prove an equivalence between the embedded and data domains when a reciprocal exists, where we naturally develop the GAN in an auto-encoder structure, in a way of comparing everything in the embedded space (a semantically meaningful manifold). This efficient structure uses only two modules, together with a simple training strategy, to achieve bi-directionally generating clear images, which is referred to as the reciprocal CF GAN (RCF-GAN). Experimental results demonstrate the superior performances of the proposed RCF-GAN in terms of both generation and reconstruction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源