论文标题

寻找通往代数歧管上电压塌陷点的最短路径

Searching for the Shortest Path to the Point of Voltage Collapse on the Algebraic Manifold

论文作者

Wu, Dan, Wolter, Franz-Erich, Wang, Bin, Xie, Le

论文摘要

电压不稳定性是电力系统停电的主要原因之一。新兴技术(例如可再生能源整合,分布式能源资源和需求响应)可能会在分析系统范围的电压稳定性时引入重大不确定性。本文首先总结了不同的已知电压不稳定性机制,然后专注于一类电压不稳定性,该电压不稳定性由代数歧管的奇异表面引起。我们认为并证明该类可以包括动态和静态电压不稳定性。为了确定到电压塌陷点的最小距离,在代数歧管上提出了新的公式。该公式将进一步转换为最佳控制框架,用于识别歧管上最小距离的路径。全面的数值研究是对不同功率系统测试案例的某些歧管进行的,并证明所提出的方法为局部最短路径的候选物提供了动态模型和静态模型的歧管上的奇异表面。模拟表明,所提出的方法比与最小欧几里得距离相关的路径可以识别歧管上的较短路径。此外,提出的方法始终将正确的路径定位在正确的奇异表面,这是电压不稳定性的。虽然欧几里得距离公式会错误地在错误的奇异表面上找到解决方案。还讨论了使用建议方法的广泛应用。

Voltage instability is one of the main causes of power system blackouts. Emerging technologies such as renewable energy integration, distributed energy resources and demand responses may introduce significant uncertainties in analyzing of system-wide voltage stability. This paper starts with summarizing different known voltage instability mechanisms, and then focuses on a class of voltage instability which is induced by the singular surface of the algebraic manifold. We argue and demonstrate that this class can include both dynamic and static voltage instabilities. To determine the minimum distance to the point of voltage collapse, a new formulation is proposed on the algebraic manifold. This formulation is further converted into an optimal control framework for identifying the path with minimum distance on the manifold. Comprehensive numerical studies are conducted on some manifolds of different power system test cases and demonstrate that the proposed method yields candidates for the local shortest paths to the singular surface on the manifold for both the dynamic model and the static model. Simulations show that the proposed method can identify shorter paths on the manifold than the paths associated with the minimum Euclidean distances. Furthermore, the proposed method always locates the right path ending at the correct singular surface which is responsible for the voltage instability; while the Euclidean distance formulation can mistakenly find solutions on the wrong singular surface. A broad range of potential applications using the proposed method are also discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源