论文标题

我知道你为什么喜欢这部电影:可解释的有效的多式联运推荐

I know why you like this movie: Interpretable Efficient Multimodal Recommender

论文作者

Rychalska, Barbara, Basaj, Dominika, Dąbrowski, Jacek, Daniluk, Michał

论文摘要

最近,已经引入了有效的歧管密度估计器(EMDE)模型。该模型利用了本地敏感的哈希和计数素描算法,将它们与神经网络相结合,以在多个推荐数据集中获得最新的结果。但是,该模型摄入每个用户/会话的所有输入项目的压缩联合表示,因此通过基于梯度的方法计算单独项目的属性似乎不适用。我们证明,由于EMDE项目检索方法的属性,可以在白框设置中解释该模型。通过利用该模型的多模式灵活性,我们获得了有意义的结果,显示了多种方式的影响:文本,分类特征和图像对电影推荐输出的影响。

Recently, the Efficient Manifold Density Estimator (EMDE) model has been introduced. The model exploits Local Sensitive Hashing and Count-Min Sketch algorithms, combining them with a neural network to achieve state-of-the-art results on multiple recommender datasets. However, this model ingests a compressed joint representation of all input items for each user/session, so calculating attributions for separate items via gradient-based methods seems not applicable. We prove that interpreting this model in a white-box setting is possible thanks to the properties of EMDE item retrieval method. By exploiting multimodal flexibility of this model, we obtain meaningful results showing the influence of multiple modalities: text, categorical features, and images, on movie recommendation output.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源