论文标题
$ \ mathbb {r}^n $中的一般集合的迹线,用于没有可怜性要求的功能
Traces on General Sets in $\mathbb{R}^n$ for Functions with no Differentiability Requirements
论文作者
论文摘要
本文关注的是为可以整合但不需要在其领域内具有任何不同性能的功能的痕迹理论。此外,域可以具有不规则的边界,具有尖尖的特征,并且编成不一定等于一个甚至整数。给定$ω\ subseteq \ mathbb {r}^n $和$γ\ subseteq \partialΩ$,我们介绍了一个函数空间$ \ mathscr {n}^{s(\ cdot),p},p},p}(ω)\ subseteq l^subseteq l^p _ { $ \ Mathscr {n}^{s(\ cdot),p}(ω)$中的成员资格将函数值中的振荡限制为$γ$,但并不意味着从$γ$上远离任何规律性。在$ω$和$γ$之间的连接假设下,我们从$ \ Mathscr {n}^{s(\ cdot),p}(ω)$从$γ$上的可测量函数的空间中产生线性跟踪操作员。例如,所有$ 1 $侧面无访问的域都满足连接性假设。如果$γ$是上层AHLFORS的规范,则痕迹是进入Sobolev-Slobodeckij空间的连续操作员。如果$γ= \partialΩ$,并且被认为是较低的Ahlfors-regular,则痕迹将显示标准的Lebesgue Point属性。要证明结果的普遍性,我们构建了$ω\ subseteq \ mathbb {r}^2 $,$ t> 1 $ - 维度ahlfors-dimensional ahlfors-digular $γ\ subseteq \ subseteq \partialΩ切向访问。
This paper is concerned with developing a theory of traces for functions that are integrable but need not possess any differentiability within their domain. Moreover, the domain can have an irregular boundary with cusp-like features and codimension not necessarily equal to one, or even an integer. Given $Ω\subseteq\mathbb{R}^n$ and $Γ\subseteq\partialΩ$, we introduce a function space $\mathscr{N}^{s(\cdot),p}(Ω)\subseteq L^p_{\text{loc}}(Ω)$ for which a well-defined trace operator can be identified. Membership in $\mathscr{N}^{s(\cdot),p}(Ω)$ constrains the oscillations in the function values as $Γ$ is approached, but does not imply any regularity away from $Γ$. Under connectivity assumptions between $Ω$ and $Γ$, we produce a linear trace operator from $\mathscr{N}^{s(\cdot),p}(Ω)$ to the space of measurable functions on $Γ$. The connectivity assumptions are satisfied, for example, by all $1$-sided nontangentially accessible domains. If $Γ$ is upper Ahlfors-regular, then the trace is a continuous operator into a Sobolev-Slobodeckij space. If $Γ=\partialΩ$ and is further assumed to be lower Ahlfors-regular, then the trace exhibits the standard Lebesgue point property. To demonstrate the generality of the results, we construct $Ω\subseteq\mathbb{R}^2$ with a $t>1$-dimensional Ahlfors-regular $Γ\subseteq\partialΩ$ satisfying the main domain hypotheses, yet $Γ$ is nowhere rectifiable and for every neighborhood of every point in $Γ$, there exists a boundary point within that neighborhood that is only tangentially accessible.