论文标题

解释对VQA中AI能力预测的影响

The Impact of Explanations on AI Competency Prediction in VQA

论文作者

Alipour, Kamran, Ray, Arijit, Lin, Xiao, Schulze, Jurgen P., Yao, Yi, Burachas, Giedrius T.

论文摘要

解释性是在AI系统中建立信任的关键要素之一。在为AI解释的众多尝试中,量化解释的效果仍然是进行人类协作任务的挑战。除了预测AI的整体行为的能力外,在许多应用程序中,用户还需要在任务域的不同方面了解AI代理的能力。在本文中,我们评估了解释对用户对AI代理能力的心理模型(VQA)任务的影响。我们根据实际系统性能和用户排名之间的相关性来量化用户对能力的理解。我们引入了一个可解释的VQA系统,该系统使用空间和对象功能,并由BERT语言模型提供动力。每组用户只看到一种解释来对VQA模型的能力进行排名。通过受试者间实验评估所提出的模型,以探测解释对用户对能力感知的影响。两个VQA模型之间的比较显示了基于BERT的解释,并且对象功能的使用可以改善用户对模型能力的预测。

Explainability is one of the key elements for building trust in AI systems. Among numerous attempts to make AI explainable, quantifying the effect of explanations remains a challenge in conducting human-AI collaborative tasks. Aside from the ability to predict the overall behavior of AI, in many applications, users need to understand an AI agent's competency in different aspects of the task domain. In this paper, we evaluate the impact of explanations on the user's mental model of AI agent competency within the task of visual question answering (VQA). We quantify users' understanding of competency, based on the correlation between the actual system performance and user rankings. We introduce an explainable VQA system that uses spatial and object features and is powered by the BERT language model. Each group of users sees only one kind of explanation to rank the competencies of the VQA model. The proposed model is evaluated through between-subject experiments to probe explanations' impact on the user's perception of competency. The comparison between two VQA models shows BERT based explanations and the use of object features improve the user's prediction of the model's competencies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源