论文标题
自闭症谱系障碍的基于神经影像学的诊断和康复的深度学习:评论
Deep Learning for Neuroimaging-based Diagnosis and Rehabilitation of Autism Spectrum Disorder: A Review
论文作者
论文摘要
自闭症谱系障碍(ASD)随后进行有效康复的准确诊断对于治疗这种疾病至关重要。人工智能(AI)技术可以帮助医生应用自动诊断和康复程序。 AI技术包括传统的机器学习(ML)方法和深度学习(DL)技术。常规的ML方法采用了各种特征提取和分类技术,但是在DL中,特征提取和分类的过程是智能而巧妙地完成的。诊断ASD的DL方法已集中在基于神经影像学的方法上。神经影像技术是非侵入性疾病标志物,可能对ASD诊断有用。结构和功能性神经成像技术为医师提供了有关大脑的结构(解剖和结构连接性)以及功能(活动和功能连通性)的大量信息。由于大脑的复杂结构和功能,提出了对ASD诊断的最佳程序,而无需利用强大的AI技术,例如DL(例如DL)可能具有挑战性。在本文中,研究了借助于DL网络进行区分ASD的研究。还评估了用于支持使用DL网络的ASD患者提供的康复工具。最后,我们将在自动检测和康复ASD中提出重要的挑战,并提出一些未来的工作。
Accurate diagnosis of Autism Spectrum Disorder (ASD) followed by effective rehabilitation is essential for the management of this disorder. Artificial intelligence (AI) techniques can aid physicians to apply automatic diagnosis and rehabilitation procedures. AI techniques comprise traditional machine learning (ML) approaches and deep learning (DL) techniques. Conventional ML methods employ various feature extraction and classification techniques, but in DL, the process of feature extraction and classification is accomplished intelligently and integrally. DL methods for diagnosis of ASD have been focused on neuroimaging-based approaches. Neuroimaging techniques are non-invasive disease markers potentially useful for ASD diagnosis. Structural and functional neuroimaging techniques provide physicians substantial information about the structure (anatomy and structural connectivity) and function (activity and functional connectivity) of the brain. Due to the intricate structure and function of the brain, proposing optimum procedures for ASD diagnosis with neuroimaging data without exploiting powerful AI techniques like DL may be challenging. In this paper, studies conducted with the aid of DL networks to distinguish ASD are investigated. Rehabilitation tools provided for supporting ASD patients utilizing DL networks are also assessed. Finally, we will present important challenges in the automated detection and rehabilitation of ASD and propose some future works.