论文标题

可压缩潜在空间可逆网络,用于生成模型受限的图像重建

Compressible Latent-Space Invertible Networks for Generative Model-Constrained Image Reconstruction

论文作者

Kelkar, Varun A., Bhadra, Sayantan, Anastasio, Mark A.

论文摘要

对于开发图像重建方法的开发仍然存在重要的需求,该方法可以从无效测量中产生诊断有用的图像。例如,在磁共振成像(MRI)中,这种方法可以促进数据收购时间的减少。基于深度学习的方法具有学习对象先验或约束的潜力,这些方法可以减轻数据包含性对图像重建的影响。一系列新兴研究涉及在生成深神经网络的潜在空间中制定基于优化的重建方法。但是,当采用生成对抗网络(GAN)时,如果寻求的解决方案不在gan的范围内,则此类方法可能导致图像重建错误。为了避免此问题,在这项工作中,提出了一个用于从不完整测量结果重建图像的框架,该框架是在可演变神经网络的基于基于神经网络的生成模型的潜在空间中提出的。引入了一种新颖的正则化策略,该策略利用了某些可逆神经网络的多尺度体系结构,这可以在传统指标方面改善经典方法的重建性能。研究了提出的方法,用于重建来自未采样的MRI数据的图像。该方法被证明可以实现与最先进的基于模型的重建方法相当的性能,同时受益于确定性的重建过程,并更容易控制正则化参数。

There remains an important need for the development of image reconstruction methods that can produce diagnostically useful images from undersampled measurements. In magnetic resonance imaging (MRI), for example, such methods can facilitate reductions in data-acquisition times. Deep learning-based methods hold potential for learning object priors or constraints that can serve to mitigate the effects of data-incompleteness on image reconstruction. One line of emerging research involves formulating an optimization-based reconstruction method in the latent space of a generative deep neural network. However, when generative adversarial networks (GANs) are employed, such methods can result in image reconstruction errors if the sought-after solution does not reside within the range of the GAN. To circumvent this problem, in this work, a framework for reconstructing images from incomplete measurements is proposed that is formulated in the latent space of invertible neural network-based generative models. A novel regularization strategy is introduced that takes advantage of the multiscale architecture of certain invertible neural networks, which can result in improved reconstruction performance over classical methods in terms of traditional metrics. The proposed method is investigated for reconstructing images from undersampled MRI data. The method is shown to achieve comparable performance to a state-of-the-art generative model-based reconstruction method while benefiting from a deterministic reconstruction procedure and easier control over regularization parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源