论文标题
具有长距离相互作用的一维量子流体的Mott-Glass相
Mott-glass phase of a one-dimensional quantum fluid with long-range interactions
论文作者
论文摘要
我们研究了通过远程排斥潜在$ {\ cal V}_σ(x)\ sim 1/| x |^{1+σ} $($ -1 <σ$)或$ {\ cal v}_σ($ -1 <σ$)或Q | sim- | x | x | x | 1-2( - 1-2)库仑电势$ {\ cal V} _0(x)$与线性限制的潜在$ {\ cal V} _ { - 2}(x)$之间的插值。在没有疾病的情况下,当$σ\ leq 0 $ $时,基态是wigner晶体。使用玻体化和非扰动功能重新归一化组,我们表明,当$ -3/2 <σ\ leq 0 $ $ -3/2 <σ\ leq 0 $时,任何数量的疾病都会抑制Wigner结晶;然后,基态是莫特玻璃,即具有消失的可压缩性和无间隙光学电导率的状态。对于$σ<-3/2 $,地面状态仍然是wigner晶体。
We investigate the ground-state properties of quantum particles interacting via a long-range repulsive potential ${\cal V}_σ(x)\sim 1/|x|^{1+σ}$ ($-1<σ$) or ${\cal V}_σ(x)\sim -|x|^{-1-σ}$ ($-2\leq σ<-1$) that interpolates between the Coulomb potential ${\cal V}_0(x)$ and the linearly confining potential ${\cal V}_{-2}(x)$ of the Schwinger model. In the absence of disorder the ground state is a Wigner crystal when $σ\leq 0$. Using bosonization and the nonperturbative functional renormalization group we show that any amount of disorder suppresses the Wigner crystallization when $-3/2<σ\leq 0$; the ground state is then a Mott glass, i.e., a state that has a vanishing compressibility and a gapless optical conductivity. For $σ<-3/2$ the ground state remains a Wigner crystal.