论文标题

基于机车图像的大脑计算机界面的转移学习:完整的管道

Transfer Learning for Motor Imagery Based Brain-Computer Interfaces: A Complete Pipeline

论文作者

Wu, Dongrui, Jiang, Xue, Peng, Ruimin, Kong, Wanzeng, Huang, Jian, Zeng, Zhigang

论文摘要

转移学习(TL)已被广泛用于基于运动图像(MI)的脑部计算机界面(BCIS),以减少新受试者​​的校准工作,并表现出有希望的性能。虽然基于闭环MI的BCI系统,但在脑电图(EEG)信号采集和时间过滤后,包括空间滤波,功能工程和分类块,然后将控制信号发送到外部设备,但先前的方法仅在一个或两个这样的组件中考虑使用TL。本文提出,在基于MI的BCIS的所有三个组件(空间过滤,功能工程和分类)中都可以考虑TL。此外,在空间过滤之前专门添加数据对齐组件以使来自不同受试者的数据更加一致,从而促进促进后续的TL也非常重要。两个MI数据集上的离线校准实验验证了我们的建议。特别是,集成数据一致性和复杂的TL方法可以显着提高分类性能,从而大大减少校准工作。

Transfer learning (TL) has been widely used in motor imagery (MI) based brain-computer interfaces (BCIs) to reduce the calibration effort for a new subject, and demonstrated promising performance. While a closed-loop MI-based BCI system, after electroencephalogram (EEG) signal acquisition and temporal filtering, includes spatial filtering, feature engineering, and classification blocks before sending out the control signal to an external device, previous approaches only considered TL in one or two such components. This paper proposes that TL could be considered in all three components (spatial filtering, feature engineering, and classification) of MI-based BCIs. Furthermore, it is also very important to specifically add a data alignment component before spatial filtering to make the data from different subjects more consistent, and hence to facilitate subsequential TL. Offline calibration experiments on two MI datasets verified our proposal. Especially, integrating data alignment and sophisticated TL approaches can significantly improve the classification performance, and hence greatly reduces the calibration effort.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源