论文标题

金属伪像还原的低维歧管限制性分离网络

Low-dimensional Manifold Constrained Disentanglement Network for Metal Artifact Reduction

论文作者

Niu, Chuang, Cong, Wenxiang, Fan, Fenglei, Shan, Hongming, Li, Mengzhou, Liang, Jimin, Wang, Ge

论文摘要

基于Deep神经网络的方法已获得了CT金属伪像减少(MAR)的有希望的结果,其中大多数使用许多合成的配对图像进行训练。由于CT图像中合成的金属伪影可能无法准确反映临床对应物,因此提出了直接直接使用未配对的临床图像的人工分解网络(ADN),从而在临床数据集中产生了令人鼓舞的结果。但是,没有足够的监督,ADN很难仅基于对抗性损失来恢复受伪影造成的CT图像的结构细节。为了克服这些问题,我们在这里提出了一个低维歧管(LDM)约束的分离网络(DN),利用图像特征通常是斑块歧管通常是低维的。具体而言,我们设计了一种LDM-DN学习算法,通过优化协同网络损耗函数来增强分离网络的能力,同时将恢复的图像限制为在低维贴片歧管上。此外,从配对和未配对的数据中学习,提出了有效的混合优化方案,以进一步改善临床数据集的MAR性能。广泛的实验表明,所提出的LDM-DN方法可以一致地改善配对和/或未配对的学习设置中的MAR性能,从而超过合成和临床数据集的竞争方法。

Deep neural network based methods have achieved promising results for CT metal artifact reduction (MAR), most of which use many synthesized paired images for training. As synthesized metal artifacts in CT images may not accurately reflect the clinical counterparts, an artifact disentanglement network (ADN) was proposed with unpaired clinical images directly, producing promising results on clinical datasets. However, without sufficient supervision, it is difficult for ADN to recover structural details of artifact-affected CT images based on adversarial losses only. To overcome these problems, here we propose a low-dimensional manifold (LDM) constrained disentanglement network (DN), leveraging the image characteristics that the patch manifold is generally low-dimensional. Specifically, we design an LDM-DN learning algorithm to empower the disentanglement network through optimizing the synergistic network loss functions while constraining the recovered images to be on a low-dimensional patch manifold. Moreover, learning from both paired and unpaired data, an efficient hybrid optimization scheme is proposed to further improve the MAR performance on clinical datasets. Extensive experiments demonstrate that the proposed LDM-DN approach can consistently improve the MAR performance in paired and/or unpaired learning settings, outperforming competing methods on synthesized and clinical datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源