论文标题
最佳区域利用的智能仓库分配器
Intelligent Warehouse Allocator for Optimal Regional Utilization
论文作者
论文摘要
在本文中,我们描述了一种新颖的解决方案,以计算时尚清单的最佳仓库分配。必须根据仓库的区域需求成比例地将所采购的库存分配给仓库。这将确保最近的仓库满足需求,从而最大程度地减少了交付物流成本和交付时间。这些是分别提高盈利能力和客户体验的关键指标。仓库具有容量限制,并且分配必须最大程度地减少库存中仓库的重新分配成本。这导致最大的区域利用(RU)。我们使用机器学习和优化方法来为该仓库分配问题建立有效的解决方案。我们使用机器学习模型来估计每种产品需求的地理分配。我们使用整数编程方法来计算考虑容量限制的最佳可行仓库分配。我们通过使用该解决方案进行了反测试,并通过证明两个关键指标区域利用率(RU)和两天交付(2DD)的百分比来验证该模型的效率。我们使用此过程来智能地创建采购订单,其中包括领先的在线时尚零售商Myntra的仓库作业。
In this paper, we describe a novel solution to compute optimal warehouse allocations for fashion inventory. Procured inventory must be optimally allocated to warehouses in proportion to the regional demand around the warehouse. This will ensure that demand is fulfilled by the nearest warehouse thereby minimizing the delivery logistics cost and delivery times. These are key metrics to drive profitability and customer experience respectively. Warehouses have capacity constraints and allocations must minimize inter warehouse redistribution cost of the inventory. This leads to maximum Regional Utilization (RU). We use machine learning and optimization methods to build an efficient solution to this warehouse allocation problem. We use machine learning models to estimate the geographical split of the demand for every product. We use Integer Programming methods to compute the optimal feasible warehouse allocations considering the capacity constraints. We conduct a back-testing by using this solution and validate the efficiency of this model by demonstrating a significant uptick in two key metrics Regional Utilization (RU) and Percentage Two-day-delivery (2DD). We use this process to intelligently create purchase orders with warehouse assignments for Myntra, a leading online fashion retailer.