论文标题

通过动态反转馈电网络的生物信用分配

Biological credit assignment through dynamic inversion of feedforward networks

论文作者

Podlaski, William F., Machens, Christian K.

论文摘要

学习取决于大脑内部突触连接的变化。在多层网络中,这些更改是由从输出回馈的错误信号触发的,通常是通过逐步反转前馈处理步骤触发的。此过程的黄金标准 - 反向传播 - 在人工神经网络中效果很好,但在生物学上是不可思议的。最近出现了一些解决此问题的建议,但是这些生物学上的许多方案中的许多基于学习一组独立的反馈连接。这使每个突触的错误分配使其依赖于第二个学习问题,并通过安装倒置而不是保证它们来使其复杂化。在这里,我们表明可以通过动力学有效地反转馈电网络变换。我们从反馈控制的角度得出了这种动态反演,在该反馈控制的角度将重复使用并与固定或随机反馈动态相互作用,以在向后传递期间传播误差信号。重要的是,该方案不依赖第二个学习问题来反馈,因为通过网络动态可以保证准确的反转。我们将这些动力学映射到通用馈电网络上,并证明所得算法在几个监督和无监督的数据集上表现良好。最后,我们讨论了动态反演和二阶优化之间的潜在联系。总体而言,我们的工作介绍了关于大脑信用分配的另一种观点,并提出了在学习过程中时间动态和反馈控制的特殊作用。

Learning depends on changes in synaptic connections deep inside the brain. In multilayer networks, these changes are triggered by error signals fed back from the output, generally through a stepwise inversion of the feedforward processing steps. The gold standard for this process -- backpropagation -- works well in artificial neural networks, but is biologically implausible. Several recent proposals have emerged to address this problem, but many of these biologically-plausible schemes are based on learning an independent set of feedback connections. This complicates the assignment of errors to each synapse by making it dependent upon a second learning problem, and by fitting inversions rather than guaranteeing them. Here, we show that feedforward network transformations can be effectively inverted through dynamics. We derive this dynamic inversion from the perspective of feedback control, where the forward transformation is reused and dynamically interacts with fixed or random feedback to propagate error signals during the backward pass. Importantly, this scheme does not rely upon a second learning problem for feedback because accurate inversion is guaranteed through the network dynamics. We map these dynamics onto generic feedforward networks, and show that the resulting algorithm performs well on several supervised and unsupervised datasets. Finally, we discuss potential links between dynamic inversion and second-order optimization. Overall, our work introduces an alternative perspective on credit assignment in the brain, and proposes a special role for temporal dynamics and feedback control during learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源