论文标题
线性响应理论中的流体动力梯度扩展
Hydrodynamic gradient expansion in linear response theory
论文作者
论文摘要
相对论流体力学中的一个基本问题涉及大阶在大阶的流体动力梯度扩张的特性。我们建立了这种梯度膨胀在线性状态下,这种梯度扩张在广泛的微观理论中分歧为相对论流体动力学极限。我们的结果不依赖于先前对重离子碰撞和宇宙学研究所使用的高度对称流体流。每当能量密度或速度场在动量空间中具有超过关键动量的动量空间的支撑,并且否则会收敛时,流体动力梯度的扩展就会有所不同。这种关键动量是微观理论的内在特性,是由流体动力分散关系的分支点奇异性设置的。
A foundational question in relativistic fluid mechanics concerns the properties of the hydrodynamic gradient expansion at large orders. We establish the precise conditions under which this gradient expansion diverges for a broad class of microscopic theories admitting a relativistic hydrodynamic limit, in the linear regime. Our result does not rely on highly symmetric fluid flows utilized by previous studies of heavy-ion collisions and cosmology. The hydrodynamic gradient expansion diverges whenever energy density or velocity fields have support in momentum space exceeding a critical momentum, and converges otherwise. This critical momentum is an intrinsic property of the microscopic theory and is set by branch point singularities of hydrodynamic dispersion relations.