论文标题
Bruhat-tits树中的分支,用于特征的本地字段
Branches in the Bruhat-Tits tree for local fields of even characteristic
论文作者
论文摘要
我们将以前的计算扩展到四季度分支分支的相对位置,以使其偶数特征的局部磁场。这是理解包含给定子顺序的最大订单集的关键步骤,例如,该子顺序有用,例如计算相对旋转图像,从而解决了选择性问题。在我们以前的工作中,结果以二次缺陷给出。在当前情况下,我们介绍并描述了Artin-Schreier扩展的类似概念。将我们的注意力限制在纯四季度产生的订单上不再有用,因为可分离的二次扩展不包含零迹线的非平凡元素。在这项工作中,我们指出了一个任意发电机的结果,为此,我们在这种情况下讨论了希尔伯特符号的更一般版本。
We extend our previous computations for the relative positions of branches of quaternions to the case of local fields of even characteristic. This is a key step to understand the set of maximal orders containing a given suborder, which is useful, for instance, to compute relative spinor images, thus solving the selectivity problem. In our previous work, the results where given in terms of the quadratic defect. In the present context, we introduce and characterize an analogous concept for Artin-Schreier extensions. It is no longer useful to restrict our attention to orders generated by pure quaternions, as a separable quadratic extension contains no non-trivial element of null trace. In this work we state our result for an arbitrary pair of generators, for which we discuss a more general version of the Hilbert symbol in this context.