论文标题

在网络音乐性能应用中,低延迟数据包丢失音频信号的深度学习方法

A Deep Learning Approach for Low-Latency Packet Loss Concealment of Audio Signals in Networked Music Performance Applications

论文作者

Verma, Prateek, Mezza, Alessandro Ilic, Chafe, Chris, Rottondi, Cristina

论文摘要

网络音乐表演(NMP)被设想为互联网应用程序中的潜在游戏规则改变者:它旨在通过使远程音乐家能够通过电信网络进行互动和共同互动并共同执行音乐互动的传统概念。但是,确保音乐表演的现实条件构成了重大的工程挑战,因为在音频质量方面非常严格的要求以及最重要的是网络延迟。为了最大程度地减少音乐家所经历的端到端延迟,NMP应用程序的典型实现使用未压缩的双向音频流并将UDP作为运输协议。通过UDP传输的音频数据包较少和不可靠,不会重新传输,因此不会重新传输,因此在接收器音频播放中引起故障。本文介绍了一种使用深度学习方法实时预测数据包内容的技术。实时隐藏错误的能力可以帮助减轻由数据包损失引起的音频障碍,从而提高现实情况下的音频播放质量。

Networked Music Performance (NMP) is envisioned as a potential game changer among Internet applications: it aims at revolutionizing the traditional concept of musical interaction by enabling remote musicians to interact and perform together through a telecommunication network. Ensuring realistic conditions for music performance, however, constitutes a significant engineering challenge due to extremely strict requirements in terms of audio quality and, most importantly, network delay. To minimize the end-to-end delay experienced by the musicians, typical implementations of NMP applications use un-compressed, bidirectional audio streams and leverage UDP as transport protocol. Being connection less and unreliable,audio packets transmitted via UDP which become lost in transit are not re-transmitted and thus cause glitches in the receiver audio playout. This article describes a technique for predicting lost packet content in real-time using a deep learning approach. The ability of concealing errors in real time can help mitigate audio impairments caused by packet losses, thus improving the quality of audio playout in real-world scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源