论文标题

多组分聚合物沉淀的数值模拟,聚类和预测

Numerical simulation, clustering and prediction of multi-component polymer precipitation

论文作者

Inguva, Pavan, Mason, Lachlan, Pan, Indranil, Hengardi, Miselle, Matar, Omar K.

论文摘要

多组分聚合物系统在有机光伏和药物递送应用中引起了人们的关注,以及各种形态会影响性能的其他产品。在组成有信息的预测工具驱动的对形态学分类的改进理解将有助于聚合物工程实践。我们使用改良的Cahn-Hilliard模型来模拟聚合物沉淀。这样的基于物理的模型需要高性能计算,以防止工程设置中的快速原型和迭代。为了降低所需的计算成本,我们将机器学习技术应用于聚类以及随之而来的模拟聚合物混合图像和模拟的预测。以这种方式集成ML和仿真可以减少将聚合物混合物形态映射到输入参数的函数所需的模拟数量,还生成了其他人可以将其用于此目的的数据集。我们通过主成分分析和自动编码器技术探索降低维度的性能,并分析所得的形态簇。随后使用高斯工艺分类的监督机器学习根据物种摩尔分数和相互作用参数输入来预测形态簇。手动图案聚类产生了最佳效果,但是机器学习技术能够以$ \ geq $ 90 $ \%$准确度预测聚合物混合物的形态。

Multi-component polymer systems are of interest in organic photovoltaic and drug delivery applications, among others where diverse morphologies influence performance. An improved understanding of morphology classification, driven by composition-informed prediction tools, will aid polymer engineering practice. We use a modified Cahn-Hilliard model to simulate polymer precipitation. Such physics-based models require high-performance computations that prevent rapid prototyping and iteration in engineering settings. To reduce the required computational costs, we apply machine learning techniques for clustering and consequent prediction of the simulated polymer blend images in conjunction with simulations. Integrating ML and simulations in such a manner reduces the number of simulations needed to map out the morphology of polymer blends as a function of input parameters and also generates a data set which can be used by others to this end. We explore dimensionality reduction, via principal component analysis and autoencoder techniques, and analyse the resulting morphology clusters. Supervised machine learning using Gaussian process classification was subsequently used to predict morphology clusters according to species molar fraction and interaction parameter inputs. Manual pattern clustering yielded the best results, but machine learning techniques were able to predict the morphology of polymer blends with $\geq$ 90 $\%$ accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源