论文标题

公平的行程分配

Fair Ride Allocation on a Line

论文作者

Amano, Yuki, Igarashi, Ayumi, Kawase, Yasushi, Makino, Kazuhisa, Ono, Hirotaka

论文摘要

机场游戏是多个代理商中单个设施的古典且众所周知的合理成本分布的模型。本文将其扩展到所谓的分配设置,也就是说,对于多个设施和代理,每个代理都选择了使用设施来使用并与其他代理商分享成本。这种情况通常可以在共享经济中看到,例如工人之间的办公桌共享费用,在线可能不同目的地的客户之间的出租车等等。我们的模型被认为是基于机场游戏的合理成本分摊的联盟组合游戏。我们称我们的模型\ emph {在一条线上分配了公平的乘车分配}。作为解决方案概念的标准,我们将纳什稳定性和嫉妒性纳入我们的环境中。我们表明,如果存在可行的分配,可以有效地计算出纳什稳定的可行分配,以最大程度地计算代理商的社会成本。为了嫉妒,我们提供了嫉妒分配的几种结构特性。基于这些,我们设计有效的算法来查找无嫉妒的分配时((1)设施数量中的至少一个,(2)设施的能力以及(3)代理类型的数量很少。此外,我们表明可以在多项式时间内计算连续的无嫉妒分配。在负面的方面,我们显示了确定在两个放松的无嫉妒概念下分配存在的NP硬度。

The airport game is a classical and well-known model of fair cost-sharing for a single facility among multiple agents. This paper extends it to the so-called assignment setting, that is, for multiple facilities and agents, each agent chooses a facility to use and shares the cost with the other agents. Such a situation can be often seen in sharing economy, such as sharing fees for office desks among workers, taxis among customers of possibly different destinations on a line, and so on. Our model is regarded as a coalition formation game based on the fair cost-sharing of the airport game; we call our model \emph{a fair ride allocation on a line}. As criteria of solution concepts, we incorporate Nash stability and envy-freeness into our setting. We show that a Nash-stable feasible allocation that minimizes the social cost of agents can be computed efficiently if a feasible allocation exists. For envy-freeness, we provide several structural properties of envy-free allocations. Based on these, we design efficient algorithms for finding an envy-free allocation when at least one of (1) the number of facilities, (2) the capacity of facilities, and (3) the number of agent types, is small. Moreover, we show that a consecutive envy-free allocation can be computed in polynomial time. On the negative front, we show the NP-hardness of determining the existence of an allocation under two relaxed envy-free concepts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源