论文标题
Majorana端状态在相互作用的量子线中
Majorana end states in an interacting quantum wire
论文作者
论文摘要
我们提出并研究了一个简单的一维模型,用于单渠道量子线托管电子,该电子托管电子相互作用,并受到显着的自旋轨道相互作用。我们表明,与Rashba旋转轨道轴直角施加的外部Zeeman磁场将电线驱动到相关的旋转密度波状态,并带有空白的旋转和无间隙电荷激发。通过(反)周期性或开放边界条件计算模型的基础变性,我们得出的结论是,相关的旋转密度状态态实现了一个无间隙的对称性拓扑相,因为基态在环形几何形状中是独特的,而在带有开放式边界的情况下是两个倍的变性。从显微镜上看,发现二重变性受磁化平等的保护保护。开放边界诱导局部零能量(MIDGAP)状态,该状态在模型的特殊Luther-Emery Point上描述了Majoraana Fermions。我们发现,尽管导线的开口末端的旋转密度表现出异常的长期相关性,尽管事实是,大部分电线衰变的所有相关性都以幂律或指数方式。我们的研究揭示了长期以来在电线中不同点之间实现旋转密度之间正确的换向关系所需的长后弦乐操作员的重要性。在此过程中,我们从当前运营商的角度来重新设计了galilean不变电子系统的低能理论。
We propose and investigate a simple one-dimensional model for a single-channel quantum wire hosting electrons that interact repulsively and are subject to a significant spin-orbit interaction. We show that an external Zeeman magnetic field, applied at the right angle to the Rashba spin-orbit axis, drives the wire into a correlated spin-density wave state with gapped spin and gapless charge excitations. By computing the ground-state degeneracies of the model with either (anti-)periodic or open boundary conditions, we conclude that the correlated spin-density state realizes a gapless symmetry-protected topological phase, as the ground state is unique in the ring geometry while it is two-fold degenerate in the wire with open boundaries. Microscopically the two-fold degeneracy is found to be protected by the conservation of the magnetization parity. Open boundaries induce localized zero-energy (midgap) states which are described, at the special Luther-Emery point of the model, by Majorana fermions. We find that spin densities at the open ends of the wire exhibit unusual long-ranged correlations despite the fact that all correlations in the bulk of the wire decay in a power-law or exponential fashion. Our study exposes the crucial importance of the long-ranged string operator needed to implement the correct commutation relations between spin densities at different points in the wire. Along the way we rederive the low-energy theory of Galilean-invariant electron systems in terms of current operators.