论文标题
小尺寸的nilpotent lie代数的能力
Capability of nilpotent Lie algebras of small dimension
论文作者
论文摘要
给定特征性$ \ neq 2 $的nilpotent Lie lie代数$ l $ 6 $ 6 $,我们展示了一种直接方法,该方法允许我们通过其非Abelian外部$ L \ wedge l \ wedge l $的计算来检测$ l $的功能。对于高于$ 6 $的尺寸,我们根据低维情况的证据表明了一般性质的结果,重点是普通的海森伯格代数。确实,我们通过$ l/z^\ wedge(l)$的Schur乘数$ m(l/z^\ wedge(l))$的大小检测到$ l \ wedge l $的功能,其中$ z^\ wedge(l)$表示$ l $的外部中心。
Given a nilpotent Lie algebra $L$ of dimension $\le 6$ on an arbitrary field of characteristic $\neq 2$, we show a direct method which allows us to detect the capability of $L$ via computations on the size of its nonabelian exterior square $L \wedge L$. For dimensions higher than $ 6$, we show a result of general nature, based on the evidences of the low dimensional case, focusing on generalized Heisenberg algebras. Indeed we detect the capability of $L \wedge L$ via the size of the Schur multiplier $M(L/Z^\wedge(L))$ of $L/Z^\wedge(L)$, where $Z^\wedge(L)$ denotes the exterior center of $L$.