论文标题
量子近似值优化图问题的可及性不足
Reachability Deficits in Quantum Approximate Optimization of Graph Problems
论文作者
论文摘要
量子近似优化算法(QAOA)已成为当代量子应用开发的基石。在这里,我们表明问题约束与问题变量的\ emph {密度}充当性能指标。发现密度与应用于随机图最小化问题实例的固定深度QAOA的近似效率低相关。此外,为准确的QAOA解决方案所需的深度,以绘制问题实例以密度为严格的尺度。由Google最近对QAOA实现的实验,我们对在理想的无噪声环境中复制的报道数据进行了重新分析。我们发现,Google通过实验解决的实例的报告功能,以超过中等密度的近似质量接近近似质量的快速下降区域。我们的发现为当代量子优化算法的性能分析提供了新的见解,并与有关低深度QAOA绩效益处的最新猜测相矛盾。
The quantum approximate optimization algorithm (QAOA) has become a cornerstone of contemporary quantum applications development. Here we show that the \emph{density} of problem constraints versus problem variables acts as a performance indicator. Density is found to correlate strongly with approximation inefficiency for fixed depth QAOA applied to random graph minimization problem instances. Further, the required depth for accurate QAOA solution to graph problem instances scales critically with density. Motivated by Google's recent experimental realization of QAOA, we preform a reanalysis of the reported data reproduced in an ideal noiseless setting. We found that the reported capabilities of instances addressed experimentally by Google, approach a rapid fall-off region in approximation quality experienced beyond intermediate-density. Our findings offer new insight into performance analysis of contemporary quantum optimization algorithms and contradict recent speculation regarding low-depth QAOA performance benefits.