论文标题

用于稀疏光谱聚类的歧管近端线性方法,并应用于单细胞RNA测序数据分析

A Manifold Proximal Linear Method for Sparse Spectral Clustering with Application to Single-Cell RNA Sequencing Data Analysis

论文作者

Wang, Zhongruo, Liu, Bingyuan, Chen, Shixiang, Ma, Shiqian, Xue, Lingzhou, Zhao, Hongyu

论文摘要

光谱聚类是广泛用于数据分析的基本无监督学习方法之一。稀疏的光谱聚类(SSC)对光谱聚类施加了稀疏性,并提高了模型的解释性。本文考虑了SSC广泛采用的模型,该模型可以用作齿状歧管的优化问题。这样的优化问题解决非常具有挑战性。现有方法通常可以解决其凸放松,或者需要使用某些平滑技术来平滑其非平滑部分。在本文中,我们提出了一种解决原始SSC公式的近端线性方法(MANPL)。我们还扩展了算法以解决多内核SSC问题,为此提出了交替的MANPL算法。建立了所提出方法的收敛性和迭代复杂性结果。我们通过单细胞RNA测序数据分析证明了我们提出的方法比现有方法的优势。

Spectral clustering is one of the fundamental unsupervised learning methods widely used in data analysis. Sparse spectral clustering (SSC) imposes sparsity to the spectral clustering and it improves the interpretability of the model. This paper considers a widely adopted model for SSC, which can be formulated as an optimization problem over the Stiefel manifold with nonsmooth and nonconvex objective. Such an optimization problem is very challenging to solve. Existing methods usually solve its convex relaxation or need to smooth its nonsmooth part using certain smoothing techniques. In this paper, we propose a manifold proximal linear method (ManPL) that solves the original SSC formulation. We also extend the algorithm to solve the multiple-kernel SSC problems, for which an alternating ManPL algorithm is proposed. Convergence and iteration complexity results of the proposed methods are established. We demonstrate the advantage of our proposed methods over existing methods via the single-cell RNA sequencing data analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源