论文标题

FPT算法用于查找$ C $ claphs的近插件

FPT Algorithms for Finding Near-Cliques in $c$-Closed Graphs

论文作者

Behera, Balaram, Husić, Edin, Jain, Shweta, Roughgarden, Tim, Seshadhri, C.

论文摘要

在研究现实世界图的研究中,找到少数边缘的大集团或集团是一项基本算法任务,并在社区检测,模式识别和聚类中进行了应用。最近在社交网络分析方面的经验工作出现了许多有效的基于回溯的启发式方法。鉴于集团计数的变体的NP硬度,这些结果对超出这些问题的最坏分析的挑战引起了挑战。受到现实世界图的三合会封闭的启发,Fox等人的启发。 (SICOMP 2020)引入了$ c $ clupt的图表的概念,并证明了最大集团枚举是相对于$ c $的固定参数。 实际上,由于数据中的噪音,人们希望真正发现“近插件”,可以将其描述为散布子图的集团。在这项工作中,我们证明可以在$ c $ clupt的图表中列举许多不同种类的最大近点(和$ c $)。我们研究了这些子结构的各种既定概念,包括$ k $ - plexes,有界排列的补充和有限的树木图。有趣的是,我们的算法遵循相对简单的回溯程序,类似于实践中所做的事情。我们的结果强调了$ c $ claper类别对社交网络分析的理论理解的重要性。

Finding large cliques or cliques missing a few edges is a fundamental algorithmic task in the study of real-world graphs, with applications in community detection, pattern recognition, and clustering. A number of effective backtracking-based heuristics for these problems have emerged from recent empirical work in social network analysis. Given the NP-hardness of variants of clique counting, these results raise a challenge for beyond worst-case analysis of these problems. Inspired by the triadic closure of real-world graphs, Fox et al. (SICOMP 2020) introduced the notion of $c$-closed graphs and proved that maximal clique enumeration is fixed-parameter tractable with respect to $c$. In practice, due to noise in data, one wishes to actually discover "near-cliques", which can be characterized as cliques with a sparse subgraph removed. In this work, we prove that many different kinds of maximal near-cliques can be enumerated in polynomial time (and FPT in $c$) for $c$-closed graphs. We study various established notions of such substructures, including $k$-plexes, complements of bounded-degeneracy and bounded-treewidth graphs. Interestingly, our algorithms follow relatively simple backtracking procedures, analogous to what is done in practice. Our results underscore the significance of the $c$-closed graph class for theoretical understanding of social network analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源