论文标题

内核辅助学习以进行个性化剂量查找

Kernel Assisted Learning for Personalized Dose Finding

论文作者

Zhu, Liangyu, Lu, Wenbin, Kosorok, Michael R., Song, Rui

论文摘要

个性化的剂量规则建议基于患者水平的信息,例如身体状况,遗传因素和药物病史,建议在连续的安全剂量范围内进行剂量水平。传统上,个性化的剂量查找过程需要重复对患者进行临床访问,并经常调整剂量。因此,患者在此过程中不断暴露于服药不足和过量的风险。寻找最佳个性化剂量规则的统计方法可以降低患者的成本和风险。在本文中,我们提出了一种内核辅助学习方法,用于估计最佳的个性化剂量规则。所提出的方法也可以应用于所有其他持续决策问题。该方法的优点包括模型错误指定的鲁棒性以及为估计参数提供统计推断的能力。在模拟研究中,我们表明该方法能够识别最佳的个性化剂量规则并在人群中产生有利的预期结果。最后,我们使用来自华法林剂量研究的数据来说明我们的方法。

An individualized dose rule recommends a dose level within a continuous safe dose range based on patient level information such as physical conditions, genetic factors and medication histories. Traditionally, personalized dose finding process requires repeating clinical visits of the patient and frequent adjustments of the dosage. Thus the patient is constantly exposed to the risk of underdosing and overdosing during the process. Statistical methods for finding an optimal individualized dose rule can lower the costs and risks for patients. In this article, we propose a kernel assisted learning method for estimating the optimal individualized dose rule. The proposed methodology can also be applied to all other continuous decision-making problems. Advantages of the proposed method include robustness to model misspecification and capability of providing statistical inference for the estimated parameters. In the simulation studies, we show that this method is capable of identifying the optimal individualized dose rule and produces favorable expected outcomes in the population. Finally, we illustrate our approach using data from a warfarin dosing study for thrombosis patients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源