论文标题

因果推理的力矩匹配图网络

Moment-Matching Graph-Networks for Causal Inference

论文作者

Park, Michael

论文摘要

在本说明中,我们探讨了一个完全无监督的深度学习框架,用于模拟观察训练数据中的非线性结构方程模型。本说明的主要贡献是将匹配损失函数应用于因果贝叶斯图的边缘的架构,从而产生了有条件的有条件匹配的图形神经网络。因此,该框架可以为各种图形干预措施对潜在空间条件概率分布进行自动采样,并能够生成样本外介入式概率,这些干预概率通常忠于地面真相分布,远远超出了训练集中所包含的范围。这些方法原则上可以与任何产生包含因果图结构的潜在空间表示的现有自动编码器一起使用。

In this note we explore a fully unsupervised deep-learning framework for simulating non-linear structural equation models from observational training data. The main contribution of this note is an architecture for applying moment-matching loss functions to the edges of a causal Bayesian graph, resulting in a generative conditional-moment-matching graph-neural-network. This framework thus enables automated sampling of latent space conditional probability distributions for various graphical interventions, and is capable of generating out-of-sample interventional probabilities that are often faithful to the ground truth distributions well beyond the range contained in the training set. These methods could in principle be used in conjunction with any existing autoencoder that produces a latent space representation containing causal graph structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源