论文标题
同质类型空间上的最大运算符的加权规范不平等
Weighted norm inequalities for the maximal operator on $\Lpp$ over spaces of homogeneous type
论文作者
论文摘要
如果有一个均匀类型的$(x,μ,d)$的空间,我们证明了强大的加权标准不等式,对于可变的指数Lebesgue Spaces $ l^\ pp $,Hardy-Little Wiles最大运算符的最大运算符。我们证明,如果$ \ pp $满足log-hölder连续性条件,而$ 1 <p_- \ leq p_+ <\ y infty $,则可变的muckenhoupt条件$ \ app $对于强类型不平等是必需的,并且足以满足强型不平等。我们的结果概括为均匀型的空间,欧几里得空间中的类似结果证明了Cruz-uribe,Fiorenza和Neugebuaer(2012)。
Given a space of homogeneous type $(X,μ,d)$, we prove strong-type weighted norm inequalities for the Hardy-Littlewood maximal operator over the variable exponent Lebesgue spaces $L^\pp$. We prove that the variable Muckenhoupt condition $\App$ is necessary and sufficient for the strong type inequality if $\pp$ satisfies log-Hölder continuity conditions and $1 < p_- \leq p_+ < \infty$. Our results generalize to spaces of homogeneous type the analogous results in Euclidean space proved by Cruz-Uribe, Fiorenza and Neugebuaer (2012).