论文标题

使用高斯混合物进行粒子模拟

An unsupervised machine-learning checkpoint-restart algorithm using Gaussian mixtures for particle-in-cell simulations

论文作者

Chen, G., Chacon, L., Nguyen, T. B.

论文摘要

我们建议使用高斯混合物(GM)提出一种无监督的机器学习检查点 - 算法(CR)算法(PIC)算法。该算法具有粒子压缩阶段和粒子重建阶段,其中分别构建和重采样了连续粒子分布函数(PDF)。为了确保CR过程的保真度,我们确保在网格上到处的任何无处不在压缩和重建阶段的不变性,例如电荷,动量和能量。我们还确保在粒子重建后保存高斯定律。结果,GM CR算法被证明可提供干净,保守的重新启动功能,同时有可能在输入/输出要求中节省数量级。我们使用最近开发的精确的能量和电荷的PIC算法使用静电和电磁测试来证明算法。这些测试不仅证明了高保真的CR能力,而且还展示了其提高给定粒子分辨率的PIC解决方案的潜水性的潜力。

We propose an unsupervised machine-learning checkpoint-restart (CR) algorithm for particle-in-cell (PIC) algorithms using Gaussian mixtures (GM). The algorithm features a particle compression stage and a particle reconstruction stage, where a continuum particle distribution function (PDF) is constructed and resampled, respectively. To guarantee fidelity of the CR process, we ensure the exact preservation of invariants such as charge, momentum, and energy for both compression and reconstruction stages, everywhere on the mesh. We also ensure the preservation of Gauss' law after particle reconstruction. As a result, the GM CR algorithm is shown to provide a clean, conservative restart capability while potentially affording orders of magnitude savings in input/output requirements. We demonstrate the algorithm using a recently developed exactly energy- and charge-conserving PIC algorithm using both electrostatic and electromagnetic tests. The tests demonstrate not only a high-fidelity CR capability, but also its potential for enhancing the fidelity of the PIC solution for a given particle resolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源