论文标题

基于网格的随机模型预测性控制不确定环境中的轨迹计划

Grid-Based Stochastic Model Predictive Control for Trajectory Planning in Uncertain Environments

论文作者

Brüdigam, Tim, di Luzio, Fulvio, Pallottino, Lucia, Wollherr, Dirk, Leibold, Marion

论文摘要

随机模型预测控制已被证明是在不确定环境(例如自动驾驶汽车)中规划轨迹的有效方法。机会约束确保碰撞的概率受预定义的风险参数的界定。但是,考虑到优化问题中的机会限制可能是具有挑战性的,并且在计算上要求限制。在本文中,我们提出了一种基于网格的随机模型预测控制方法。这种方法允许确定对机会限制的简单确定性重新重新制定,并减少计算工作,同时考虑环境的随机性。在提出的方法中,我们首先将环境分为网格,对于每个预测的步骤,将每个单元格分配一个概率值,这代表了该单元将被周围车辆占据的概率。然后,通过施加阈值,代表风险参数,将概率网格转化为可接受和不可接受的细胞的二元网格。只有低于阈值的占用概率的细胞对于受控车辆才能接受。鉴于可允许的单元,生成凸壳,然后可以用于轨迹计划。自主驾驶高速公路情景的模拟显示了提出的基于网格的随机模型预测控制方法的好处。

Stochastic Model Predictive Control has proved to be an efficient method to plan trajectories in uncertain environments, e.g., for autonomous vehicles. Chance constraints ensure that the probability of collision is bounded by a predefined risk parameter. However, considering chance constraints in an optimization problem can be challenging and computationally demanding. In this paper, we present a grid-based Stochastic Model Predictive Control approach. This approach allows to determine a simple deterministic reformulation of the chance constraints and reduces the computational effort, while considering the stochastic nature of the environment. Within the proposed method, we first divide the environment into a grid and, for each predicted step, assign each cell a probability value, which represents the probability that this cell will be occupied by surrounding vehicles. Then, the probabilistic grid is transformed into a binary grid of admissible and inadmissible cells by applying a threshold, representing a risk parameter. Only cells with an occupancy probability lower than the threshold are admissible for the controlled vehicle. Given the admissible cells, a convex hull is generated, which can then be used for trajectory planning. Simulations of an autonomous driving highway scenario show the benefits of the proposed grid-based Stochastic Model Predictive Control method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源