论文标题
Kato型标准,用于在Onsager的关键规律性附近消失的粘度
A Kato-type criterion for vanishing viscosity near the Onsager's critical regularity
论文作者
论文摘要
我们考虑了三维纳维尔的弱解的消失的粘度序列 - 在有界域上的stokes方程。在开创性的纸张[25]中,Kato表明,对于足够的规则溶液,消失的粘度极限等于在与粘度成正比的边界层中消失的粘性耗散。我们证明,Kato的标准适用于Hölder连续解决方案,其规律性指数通过新的边界层叶面和全球摩尔化任意接近Onsager的关键指数。
We consider a vanishing viscosity sequence of weak solutions of the three-dimensional Navier--Stokes equations on a bounded domain. In a seminal paper [25] Kato showed that for sufficiently regular solutions, the vanishing viscosity limit is equivalent to having vanishing viscous dissipation in a boundary layer of width proportional to the viscosity. We prove that Kato's criterion holds for Hölder continuous solutions with the regularity index arbitrarily close to the Onsager's critical exponent through a new boundary layer foliation and a global mollification.