论文标题

数据融合方法用于治疗效果和混杂功能的异质性

Data fusion methods for the heterogeneity of treatment effect and confounding function

论文作者

Yang, Shu, Liu, Siyi, Zeng, Donglin, Wang, Xiaofei

论文摘要

治疗效果(HTE)的异质性是精密医学的核心。随机对照试验是用于治疗效应估计的金色标准,但通常对异质效应的功能不足。相反,大型观察性研究具有很高的预测能力,但由于缺乏治疗的随机化而经常会混淆。我们表明,一项观察性研究,即使是隐藏的混杂,也可以用来使用混杂功能概念来估算HTE的能力试验。鉴于观察到的协变量,这种混杂功能总结了未衡量的混杂因素对观察到的治疗效果和因果治疗效果之间差异的影响,这仅基于观察性研究,这是无法识别的。结合试验和观察性研究,我们表明HTE和混杂功能是可识别的。然后,我们得出HTE和混杂函数的半参数有效分数和集成估计器。我们阐明了HTE的综合估计器严格比试验估计器更有效的条件。最后,我们通过模拟和应用程序说明了集成估计器。

The heterogeneity of treatment effect (HTE) lies at the heart of precision medicine. Randomized controlled trials are gold-standard for treatment effect estimation but are typically underpowered for heterogeneous effects. In contrast, large observational studies have high predictive power but are often confounded due to the lack of randomization of treatment. We show that an observational study, even subject to hidden confounding, may be used to empower trials in estimating the HTE using the notion of confounding function. The confounding function summarizes the impact of unmeasured confounders on the difference between the observed treatment effect and the causal treatment effect, given the observed covariates, which is unidentifiable based only on the observational study. Coupling the trial and observational study, we show that the HTE and confounding function are identifiable. We then derive the semiparametric efficient scores and the integrative estimators of the HTE and confounding function. We clarify the conditions under which the integrative estimator of the HTE is strictly more efficient than the trial estimator. Finally, we illustrate the integrative estimators via simulation and an application.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源