论文标题
D2D Edge网络中的最小间接费用波束形成和资源分配
Minimum Overhead Beamforming and Resource Allocation in D2D Edge Networks
论文作者
论文摘要
设备对设备(D2D)通信有望成为边缘网络中分布式计算的关键推动力。提供此功能的一个主要挑战是,必须明智地管理在边缘上存在的异质通信和计算资源以满足处理需求的要求。在本文中,我们开发了一种优化方法,该方法将与设备和网络资源分配共同考虑网络拓扑,以最大程度地减少D2D开销,我们根据任务处理所需的时间和能量进行量化。我们的模型中的变量包括任务分配,CPU分配,子渠道选择和用于多输入多输出(MIMO)无线设备的波束成型设计。我们提出了两种方法来求解所得的非凸混合整数程序:半悬而未决的搜索优化,它代表了获得最佳解决方案和有效替代优化的“最佳效果”,这在计算上是更有效的。作为这两种方法的一个组成部分,我们开发了一种新颖的协调束形式算法,我们显示,该算法获得了公共接收器特征的最佳光束形式。通过数值实验,我们发现我们的方法论与局部计算和部分优化的方法相比,网络间接费用可实现,这可以验证我们的关节优化方法。此外,我们发现有效的替代优化与节点的数量良好,因此可以成为大型网络中D2D计算的实用解决方案。
Device-to-device (D2D) communications is expected to be a critical enabler of distributed computing in edge networks at scale. A key challenge in providing this capability is the requirement for judicious management of the heterogeneous communication and computation resources that exist at the edge to meet processing needs. In this paper, we develop an optimization methodology that considers the network topology jointly with device and network resource allocation to minimize total D2D overhead, which we quantify in terms of time and energy required for task processing. Variables in our model include task assignment, CPU allocation, subchannel selection, and beamforming design for multiple-input multiple-output (MIMO) wireless devices. We propose two methods to solve the resulting non-convex mixed integer program: semi-exhaustive search optimization, which represents a "best-effort" at obtaining the optimal solution, and efficient alternate optimization, which is more computationally efficient. As a component of these two methods, we develop a novel coordinated beamforming algorithm which we show obtains the optimal beamformer for a common receiver characteristic. Through numerical experiments, we find that our methodology yields substantial improvements in network overhead compared with local computation and partially optimized methods, which validates our joint optimization approach. Further, we find that the efficient alternate optimization scales well with the number of nodes, and thus can be a practical solution for D2D computing in large networks.