论文标题

FEDML:联合机器学习的研究库和基准

FedML: A Research Library and Benchmark for Federated Machine Learning

论文作者

He, Chaoyang, Li, Songze, So, Jinhyun, Zeng, Xiao, Zhang, Mi, Wang, Hongyi, Wang, Xiaoyang, Vepakomma, Praneeth, Singh, Abhishek, Qiu, Hang, Zhu, Xinghua, Wang, Jianzong, Shen, Li, Zhao, Peilin, Kang, Yan, Liu, Yang, Raskar, Ramesh, Yang, Qiang, Annavaram, Murali, Avestimehr, Salman

论文摘要

联合学习(FL)是机器学习中快速增长的研究领域。但是,现有的FL图书馆不能充分支持多样化的算法开发。不一致的数据集和模型用法使公平的算法比较具有挑战性。在这项工作中,我们介绍了FEDML,这是一个开放的研究库和基准测试,以促进FL算法开发和公平性能比较。 FEDML支持三个计算范式:边缘设备的设备训练,分布式计算和单机器模拟。 FEDML还通过灵活而通用的API设计以及全面的参考基线实现(优化器,模型和数据集)促进了多样化的算法研究。我们希望FEDML可以为开发和评估FL研究社区的FL算法提供有效且可重复的手段。我们在https://fedml.ai上维护源代码,文档和用户社区。

Federated learning (FL) is a rapidly growing research field in machine learning. However, existing FL libraries cannot adequately support diverse algorithmic development; inconsistent dataset and model usage make fair algorithm comparison challenging. In this work, we introduce FedML, an open research library and benchmark to facilitate FL algorithm development and fair performance comparison. FedML supports three computing paradigms: on-device training for edge devices, distributed computing, and single-machine simulation. FedML also promotes diverse algorithmic research with flexible and generic API design and comprehensive reference baseline implementations (optimizer, models, and datasets). We hope FedML could provide an efficient and reproducible means for developing and evaluating FL algorithms that would benefit the FL research community. We maintain the source code, documents, and user community at https://fedml.ai.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源