论文标题

最佳循环(R,δ)的新构建局部可从其零局部修复代码

New Constructions of Optimal Cyclic (r,δ) Locally Repairable Codes from Their Zeros

论文作者

Qiu, Jing, Zheng, Dabin, Fu, Fang-Wei

论文摘要

Prakash等人引入了$(r,δ)$ - 本地维修代码($(R,δ)$ -LRC)。 \ cite {prakash2012}用于耐受分布式存储系统中多个失败的节点,这是Gopalan等人产生的$ r $ -lrcs概念的概括。 \ cite {gopalan2012}。 $(r,δ)$ -LRC如果达到单例式结合,则据说它是最佳的。最近,Chen等。 \ cite {chen2018}概括了Tamo等人提出的环状$ r $ -lrcs的构建。 \ cite {tamo2015,tamo2016},并构建了几类最佳$(r,δ)$ - lrcs长度为$ n $ for $ n \,| \,| \,(q-1)$或$ n \,(q-n \,| \,(q+1)$,分别以zeros Control的zeros Control和zeros Control的范围,分别为zeros Control和zeros Control。在\ cite {chen2018,chen2019}的工作之后,本文首先表征了$(r,δ)$ - 通过其零零的循环代码的局部性。然后,我们分别从两组零的产品中构造了几类最佳环状$(r,δ)$ - lrcs $ n $ for $ n \,| \,(q-1)$或$ n \,| \,(q+1)$。我们的构造包括所有最佳环状$(R,δ)$ -LRCS在\ cite {Chen2018,Chen2019}中提出的,我们的方法似乎更方便获得具有灵活参数的最佳循环$(R,δ)$ -LRC。此外,许多最佳的环状$(r,δ)$ - lrcs的长度$ n $ for $ n \,| \,(q-1)$或$ n \,| \,(q+1)$,因此可以从我们的方法中获得$(r+Δ1)\ nmid n $。

An $(r, δ)$-locally repairable code ($(r, δ)$-LRC for short) was introduced by Prakash et al. \cite{Prakash2012} for tolerating multiple failed nodes in distributed storage systems, which was a generalization of the concept of $r$-LRCs produced by Gopalan et al. \cite{Gopalan2012}. An $(r, δ)$-LRC is said to be optimal if it achieves the Singleton-like bound. Recently, Chen et al. \cite{Chen2018} generalized the construction of cyclic $r$-LRCs proposed by Tamo et al. \cite{Tamo2015,Tamo2016} and constructed several classes of optimal $(r, δ)$-LRCs of length $n$ for $n\, |\, (q-1)$ or $n\,|\, (q+1)$, respectively in terms of a union of the set of zeros controlling the minimum distance and the set of zeros ensuring the locality. Following the work of \cite{Chen2018,Chen2019}, this paper first characterizes $(r, δ)$-locality of a cyclic code via its zeros. Then we construct several classes of optimal cyclic $(r, δ)$-LRCs of length $n$ for $n\, |\, (q-1)$ or $n\,|\, (q+1)$, respectively from the product of two sets of zeros. Our constructions include all optimal cyclic $(r,δ)$-LRCs proposed in \cite{Chen2018,Chen2019}, and our method seems more convenient to obtain optimal cyclic $(r, δ)$-LRCs with flexible parameters. Moreover, many optimal cyclic $(r,δ)$-LRCs of length $n$ for $n\, |\, (q-1)$ or $n\,|\, (q+1)$, respectively such that $(r+δ-1)\nmid n$ can be obtained from our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源