论文标题

在199例患者CT扫描中自动分割肺,病变和病变类型的深度学习方法的比较研究

Comparative study of deep learning methods for the automatic segmentation of lung, lesion and lesion type in CT scans of COVID-19 patients

论文作者

Tilborghs, Sofie, Dirks, Ine, Fidon, Lucas, Willems, Siri, Eelbode, Tom, Bertels, Jeroen, Ilsen, Bart, Brys, Arne, Dubbeldam, Adriana, Buls, Nico, Gonidakis, Panagiotis, Sánchez, Sebastián Amador, Snoeckx, Annemiek, Parizel, Paul M., de Mey, Johan, Vandermeulen, Dirk, Vercauteren, Tom, Robben, David, Smeets, Dirk, Maes, Frederik, Vandemeulebroucke, Jef, Suetens, Paul

论文摘要

COVID-19的最新研究表明,除了帮助理解疾病外,CT成像提供了有用的信息来评估疾病进展并有助于诊断。越来越多的研究建议使用深度学习,以使用胸部CT扫描对Covid-19进行快速准确的量化。感兴趣的主要任务是对确认或疑似CoVID患者的胸部CT扫描中的肺和肺部病变自动分割。在这项研究中,我们使用多中心数据集比较了十二种深度学习算法,包括开源和内部开发算法。结果表明,结合方法可以提高肺部分割,二进制病变分割和多类病变分割的整体测试集性能,从而导致平均骰子得分分别为0.982、0.724和0.469。将所得的二进制病变分割,平均绝对体积误差为91.3 mL。通常,区分不同病变类型的任务更加困难,平均绝对体积差为152 mL,平均骰子得分分别为0.369和0.523,分别为合并和地面玻璃不透明度。所有方法都执行二元病变细分,平均体积误差比人类评估者的视觉评估要好,这表明这些方法已经足够成熟,足以进行大规模评估以在临床实践中使用。

Recent research on COVID-19 suggests that CT imaging provides useful information to assess disease progression and assist diagnosis, in addition to help understanding the disease. There is an increasing number of studies that propose to use deep learning to provide fast and accurate quantification of COVID-19 using chest CT scans. The main tasks of interest are the automatic segmentation of lung and lung lesions in chest CT scans of confirmed or suspected COVID-19 patients. In this study, we compare twelve deep learning algorithms using a multi-center dataset, including both open-source and in-house developed algorithms. Results show that ensembling different methods can boost the overall test set performance for lung segmentation, binary lesion segmentation and multiclass lesion segmentation, resulting in mean Dice scores of 0.982, 0.724 and 0.469, respectively. The resulting binary lesions were segmented with a mean absolute volume error of 91.3 ml. In general, the task of distinguishing different lesion types was more difficult, with a mean absolute volume difference of 152 ml and mean Dice scores of 0.369 and 0.523 for consolidation and ground glass opacity, respectively. All methods perform binary lesion segmentation with an average volume error that is better than visual assessment by human raters, suggesting these methods are mature enough for a large-scale evaluation for use in clinical practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源