论文标题

单半球光电子动量显微镜与飞行时间记录

Single-Hemisphere Photoelectron Momentum Microscope With Time-of-Flight Recording

论文作者

Schoenhense, G., Babenkov, S., Vasilyev, D., Elmers, H. -J., Medjanik, K.

论文摘要

光电子动量显微镜是一种针对角度分辨光电光谱(ARPE)的新兴方法,尤其是与成像自旋滤光片结合使用。这些仪器记录了KX-KY图像,通常超过了整个布里渊区。随着能量过滤器的使用,使用双眼或飞行时间(TOF)设备。在这里,我们提出了一种基于单个半球分析仪(路径半径225毫米)的全半空间的动量映射的新方法。不重要的灯的激发产生了7.7 meV的能量分辨率。 AU和XE多层中量子孔状态的K形象证明了该性能。在球场中电子在球场中电子的α平方隔离项(Alpha:分散平面的入口角度)和电子在球场中的转运时间扩散以大型传球能力(6至660 eV)和角范围(α到约7°)。讨论了该方法如何规避由于α平方术语和运输时间扩散而导致的先前理论工作的先前理论工作的前提,这对时间分辨的实验有害。得益于K分辨的检测,这两种效应都可以通过数值校正。我们引入了分散式杂种操作模式,在半球的出口缝隙后面,成像TOF分析仪。该仪器捕获了3D数据阵列I(EB,KX,KY),在记录效率(n是已解决的时间切片的数量)方面的增益最高为n^2。关键应用将是在具有高脉冲率的源中的ARPE,例如具有500 MHz时间结构的同步基因。

Photoelectron momentum microscopy is an emerging powerful method for angle-resolved photoelectron spectroscopy (ARPES), especially in combination with imaging spin filters. These instruments record kx-ky images, typically exceeding a full Brillouin zone. As energy filters double-hemispherical or time-of-flight (ToF) devices are in use. Here we present a new approach for momentum mapping of the full half-space, based on a single hemispherical analyzer (path radius 225 mm). Excitation by an unfocused He lamp yielded an energy resolution of 7.7 meV. The performance is demonstrated by k-imaging of quantum-well states in Au and Xe multilayers. The alpha-square-aberration term (alpha: entrance angle in the dispersive plane) and the transit-time spread of the electrons in the spherical field are studied in a large pass-energy (6 to 660 eV) and angular range (alpha up to about 7°). It is discussed how the method circumvents the preconditions of previous theoretical work on the resolution limitation due to the alpha-square-term and the transit-time spread, being detrimental for time-resolved experiments. Thanks to k-resolved detection, both effects can be corrected numerically. We introduce a dispersive-plus-ToF hybrid mode of operation, with an imaging ToF analyzer behind the exit slit of the hemisphere. This instrument captures 3D data arrays I(EB,kx,ky), yielding a gain up to N^2 in recording efficiency (N being the number of resolved time slices). A key application will be ARPES at sources with high pulse rates like Synchrotrons with 500 MHz time structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源