论文标题

多个属性选择决策的LookAhead和混合样本分配程序

Lookahead and Hybrid Sample Allocation Procedures for Multiple Attribute Selection Decisions

论文作者

Herrmann, Jeffrey W., Mehta, Kunal

论文摘要

属性提供了有关决策者正在考虑的替代方案的关键信息。当他们的大幅度不确定时,决策者可能不确定哪种替代方案确实是最好的,因此测量属性可以帮助决策者做出更好的决定。本文考虑了每个测量值的设置,其中一个替代方案的一个属性样本。当给出固定数量的要收集样本时,决策者必须确定要获得哪些样本,进行测量,更新有关属性幅度的先验信念,然后选择替代方案。本文提出了多个属性选择决策的样本分配问题,并提出了两个顺序的,lookahead程序,用于使用离散分布来对不确定属性大小进行建模的情况。这两个过程相似,但反映了不同的质量度量(和损失功能),这激发了不同的决策规则:(1)选择具有最大预期效用的替代方案,以及(2)选择最有可能是真正最好的替代方案的替代方案。我们进行了一项模拟研究,以评估顺序程序和混合程序的性能,该过程首先使用统一的分配程序分配一些样品,然后使用顺序的LookAhead程序。结果表明混合程序是有效的。用统一的分配程序分配了许多(但不是全部)样本的许多(但不是全部)不仅减少了总体计算工作,而且还选择了平均机会成本较低的替代方案,而且通常最好是最好的。

Attributes provide critical information about the alternatives that a decision-maker is considering. When their magnitudes are uncertain, the decision-maker may be unsure about which alternative is truly the best, so measuring the attributes may help the decision-maker make a better decision. This paper considers settings in which each measurement yields one sample of one attribute for one alternative. When given a fixed number of samples to collect, the decision-maker must determine which samples to obtain, make the measurements, update prior beliefs about the attribute magnitudes, and then select an alternative. This paper presents the sample allocation problem for multiple attribute selection decisions and proposes two sequential, lookahead procedures for the case in which discrete distributions are used to model the uncertain attribute magnitudes. The two procedures are similar but reflect different quality measures (and loss functions), which motivate different decision rules: (1) select the alternative with the greatest expected utility and (2) select the alternative that is most likely to be the truly best alternative. We conducted a simulation study to evaluate the performance of the sequential procedures and hybrid procedures that first allocate some samples using a uniform allocation procedure and then use the sequential, lookahead procedure. The results indicate that the hybrid procedures are effective; allocating many (but not all) of the initial samples with the uniform allocation procedure not only reduces overall computational effort but also selects alternatives that have lower average opportunity cost and are more often truly best.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源