论文标题
GMFACE:使用多高斯的数学模型用于面部图像表示
GmFace: A Mathematical Model for Face Image Representation Using Multi-Gaussian
论文作者
论文摘要
建立数学模型是理解客观世界的无处不在有效的方法。由于复杂的生理结构和动态行为,人脸的数学表示是一项特别具有挑战性的任务。在本文中,提出了一个称为gmface的面部图像表示的数学模型。该模型利用了二维高斯函数的优势,该功能提供了一个可以通过参数控制的形状的对称铃铛表面。然后,使用高斯函数作为神经元设计GMNET,其参数与GMFACE的每个参数相对应,以将GMFACE参数求解的问题转换为GMNET的网络优化问题。面部建模过程可以通过以下步骤描述:(1)GMNET初始化; (2)用面部图像喂食gmnet; (3)训练gmnet直到收敛; (4)绘制gmnet的参数(与gmface相同); (5)记录面部模型GMFACE。此外,使用gmface,可以通过简单的参数计算来数学上实现几个面部图像转换操作。
Establishing mathematical models is a ubiquitous and effective method to understand the objective world. Due to complex physiological structures and dynamic behaviors, mathematical representation of the human face is an especially challenging task. A mathematical model for face image representation called GmFace is proposed in the form of a multi-Gaussian function in this paper. The model utilizes the advantages of two-dimensional Gaussian function which provides a symmetric bell surface with a shape that can be controlled by parameters. The GmNet is then designed using Gaussian functions as neurons, with parameters that correspond to each of the parameters of GmFace in order to transform the problem of GmFace parameter solving into a network optimization problem of GmNet. The face modeling process can be described by the following steps: (1) GmNet initialization; (2) feeding GmNet with face image(s); (3) training GmNet until convergence; (4) drawing out the parameters of GmNet (as the same as GmFace); (5) recording the face model GmFace. Furthermore, using GmFace, several face image transformation operations can be realized mathematically through simple parameter computation.