论文标题

基于Wasserstein的预测,并应用于反问题

Wasserstein-based Projections with Applications to Inverse Problems

论文作者

Heaton, Howard, Fung, Samy Wu, Lin, Alex Tong, Osher, Stanley, Yin, Wotao

论文摘要

反问题包括从一系列嘈杂的测量集中恢复信号。这些通常被视为优化问题,使用数据保真度术语和稳定恢复的分析术语的经典方法。最近的插件播放(PNP)作品提出,通过数据驱动的Denoiser在优化方法中替换运算符进行分析正则化。这些方案获得了艺术的结果,但以有限的理论保证为代价。为了弥合此差距,我们提出了一种新算法,该算法从真实数据的流形中获取样品作为输入,并将投影算子的近似值输出到该歧管上。在标准假设下,我们证明该算法生成了一个学识渊博的操作员,称为基于Wasserstein的投影(WP),该算法以高概率近似于真实投影。因此,可以以与PNP相同的方式将WPS插入优化方法,但现在具有理论保证。提供的数值示例显示WPS获得了无监督的PNP信号恢复的最新结果。

Inverse problems consist of recovering a signal from a collection of noisy measurements. These are typically cast as optimization problems, with classic approaches using a data fidelity term and an analytic regularizer that stabilizes recovery. Recent Plug-and-Play (PnP) works propose replacing the operator for analytic regularization in optimization methods by a data-driven denoiser. These schemes obtain state of the art results, but at the cost of limited theoretical guarantees. To bridge this gap, we present a new algorithm that takes samples from the manifold of true data as input and outputs an approximation of the projection operator onto this manifold. Under standard assumptions, we prove this algorithm generates a learned operator, called Wasserstein-based projection (WP), that approximates the true projection with high probability. Thus, WPs can be inserted into optimization methods in the same manner as PnP, but now with theoretical guarantees. Provided numerical examples show WPs obtain state of the art results for unsupervised PnP signal recovery.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源