论文标题

在恒定渗透率的情况下,非组织周期性麦克斯韦系统的均质化

Homogenization of nonstationary periodic Maxwell system in the case of constant permeability

论文作者

Dorodnyi, Mark, Suslina, Tatiana

论文摘要

在$ l_2({\ Mathbb r}^3; {\ Mathbb c}^3)$中,我们考虑一个自adjoint Opitiator $ {\ Mathcal l} _ \ Varepsilon $,$ \ VAREPSILON> 0 η(\ MathBf {X}/\ Varepsilon)^{ - 1} \ operatorName {curl}μ_0^{ - 1/2} - 1/2} - μ_0^{1/2} \ nabla μ_0^{1/2} $,其中$μ_0$是一个恒定的正矩阵,矩阵值函数$η(\ Mathbf {x})$,而实用函数$ν(\ sathbf {x})$与某些lattice,正面确定和界限。我们研究操作员值函数的行为$ \ cos(τ{\ Mathcal l} _ \ varepsilon^{1/2})$和$ {\ Mathcal l} _ \ varepsilon^{ - 1/2} { - 1/1/2} \ sin(-1/1/1/1/1/1/1/1/2} \ sin( $τ\ in {\ mathbb r} $和小$ \ varepsilon $。结果表明,这些运算符将操作员$ {\ MATHCAL L}^0 $的相应运算符值函数收集到从Sobolev Space $ H^S $(合适的$ S $)到$ L_2 $的运算符的规范中。这里$ {\ Mathcal L}^0 $是具有恒定系数的有效运算符。另外,在$(h^s \ to H^1)$的校正中的近似值 - 运算符$ {\ Mathcal l} _ \ varepsilon^{ - 1/2} \ sin(τ{\ Mathcal l} _ \ varepsilon^{1/2})我们证明了误差估计并研究了有关操作员规范类型以及估计值对$τ$的依赖性的结果。如果磁性渗透性等于$μ_0$,则将结果应用于非平稳麦克斯韦系统的cauchy问题的均质化,并且介电渗透效率由矩阵$η(\ Mathbf {x}/\ varepsilon)给出。

In $L_2({\mathbb R}^3;{\mathbb C}^3)$, we consider a selfadjoint operator ${\mathcal L}_\varepsilon$, $\varepsilon >0$, given by the differential expression $μ_0^{-1/2}\operatorname{curl} η(\mathbf{x}/\varepsilon)^{-1} \operatorname{curl} μ_0^{-1/2} - μ_0^{1/2}\nabla ν(\mathbf{x}/\varepsilon) \operatorname{div} μ_0^{1/2}$, where $μ_0$ is a constant positive matrix, a matrix-valued function $η(\mathbf{x})$ and a real-valued function $ν(\mathbf{x})$ are periodic with respect to some lattice, positive definite and bounded. We study the behavior of the operator-valued functions $\cos (τ{\mathcal L}_\varepsilon^{1/2})$ and ${\mathcal L}_\varepsilon^{-1/2} \sin (τ{\mathcal L}_\varepsilon^{1/2})$ for $τ\in {\mathbb R}$ and small $\varepsilon$. It is shown that these operators converge to the corresponding operator-valued functions of the operator ${\mathcal L}^0$ in the norm of operators acting from the Sobolev space $H^s$ (with a suitable $s$) to $L_2$. Here ${\mathcal L}^0$ is the effective operator with constant coefficients. Also, an approximation with corrector in the $(H^s \to H^1)$-norm for the operator ${\mathcal L}_\varepsilon^{-1/2} \sin (τ{\mathcal L}_\varepsilon^{1/2})$ is obtained. We prove error estimates and study the sharpness of the results regarding the type of the operator norm and regarding the dependence of the estimates on $τ$. The results are applied to homogenization of the Cauchy problem for the nonstationary Maxwell system in the case where the magnetic permeability is equal to $μ_0$, and the dielectric permittivity is given by the matrix $η(\mathbf{x}/\varepsilon)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源